0

0

解决 Pandas DataFrame 高度碎片化警告:优化列插入操作

聖光之護

聖光之護

发布时间:2025-08-12 16:34:31

|

559人浏览过

|

来源于php中文网

原创

解决 pandas dataframe 高度碎片化警告:优化列插入操作

本文旨在帮助开发者解决在使用 Pandas DataFrame 时遇到的“DataFrame is highly fragmented”性能警告。该警告通常由于频繁使用 frame.insert 或类似操作导致,效率低下。本文将介绍如何通过使用 pd.concat 函数,以更高效的方式合并列,从而避免 DataFrame 碎片化,提升代码性能。

Pandas DataFrame 碎片化问题与解决方案

在使用 Pandas 进行数据处理时,频繁地向 DataFrame 中插入列可能会导致性能问题,并触发 "PerformanceWarning: DataFrame is highly fragmented" 警告。 这是因为 Pandas 在底层存储 DataFrame 数据时,频繁的插入操作会导致内存碎片化,降低数据访问效率。

问题根源:低效的列插入

以下代码示例展示了导致 DataFrame 碎片化警告的典型场景:

import pandas as pd

# 创建一个示例 DataFrame
df = pd.DataFrame({f"col{i}": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in range(1_000)})

# 频繁插入列 (低效)
new_df = pd.DataFrame()
for i in range(1_000):
    new_df[f"new_df_col{i}"] = df[f"col{i}"] + i

print(new_df)

运行上述代码会产生性能警告,因为在循环中不断地向 new_df 插入新列。 这种方法效率很低,特别是当处理大型 DataFrame 时。

解决方案:使用 pd.concat 合并列

更高效的解决方案是使用 pd.concat 函数一次性合并所有列。以下代码展示了如何使用 pd.concat 避免 DataFrame 碎片化:

import pandas as pd

# 创建一个示例 DataFrame
df = pd.DataFrame({f"col{i}": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in range(1_000)})

# 使用字典存储新列数据
data = {}
for i in range(1_000):
    data[f"new_col{i}"] = df[f"col{i}"] + i

# 使用 pd.concat 一次性合并所有列
new_df = pd.concat(data.values(), axis=1, ignore_index=True)
new_df.columns = data.keys()  # 设置列名 (Python 3.7+ 保证插入顺序)

print(new_df)

在这个改进后的代码中,我们首先使用一个字典 data 存储所有需要添加的新列。 然后,我们使用 pd.concat 函数将字典中的所有值(即新列)沿列方向(axis=1)合并成一个新的 DataFrame。 这种方法避免了频繁的列插入操作,从而避免了 DataFrame 碎片化。

小艺
小艺

华为公司推出的AI智能助手

下载

应用于原问题

对于原问题中提到的代码片段:

df['xcount'] = df.apply(self.go_unigram, axis=1)
df[self.listsunigram] = pd.DataFrame(df.xcount.tolist(), index=df.index)

df['xcount'] = df.apply(self.go_bigram, axis=1)
df[self.listsbigram] = pd.DataFrame(df.xcount.tolist(), index=df.index)

df['xcount'] = df.apply(self.go_complex, axis=1)
df[self.listcomplex] = pd.DataFrame(df.xcount.tolist(), index=df.index)

可以将其修改为:

df['xcount'] = df.apply(self.go_unigram, axis=1)
df = pd.concat(
    [df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listsunigram)],
    axis=1,
)

df['xcount'] = df.apply(self.go_bigram, axis=1)
df = pd.concat(
    [df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listsbigram)],
    axis=1,
)

df['xcount'] = df.apply(self.go_complex, axis=1)
df = pd.concat(
    [df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listcomplex)],
    axis=1,
)

通过使用 pd.concat,可以避免频繁地向 DataFrame 中插入列,从而提高代码的性能。

注意事项

  • 内存占用 使用 pd.concat 创建新的 DataFrame 可能会占用更多的内存,特别是当处理非常大的数据集时。 在这种情况下,可以考虑使用其他优化技术,例如使用 NumPy 数组进行数据处理。
  • 数据类型: 确保要合并的列具有相同的数据类型,或者可以安全地转换为相同的数据类型。 否则,可能会导致数据类型不匹配的错误。
  • 列名冲突: 如果要合并的 DataFrame 中存在相同的列名,pd.concat 会自动重命名这些列。 可以使用 suffixes 参数来指定重命名的后缀。

总结

通过避免频繁的列插入操作,并使用 pd.concat 函数一次性合并所有列,可以有效地解决 Pandas DataFrame 碎片化问题,提高代码的性能。 在处理大型数据集时,这种优化方法尤其重要。 同时,需要注意内存占用、数据类型和列名冲突等问题,以确保代码的正确性和效率。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

48

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

293

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

216

2025.10.31

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

115

2025.12.24

拼豆图纸在线生成器
拼豆图纸在线生成器

拼豆图纸生成器有PixelBeads在线版、BeadGen和“豆图快转”;推荐通过pixelbeads.online或搜索“beadgen free online”直达官网,避开需注册的诱导页面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

84

2025.12.24

俄罗斯搜索引擎yandex官方入口地址(最新版)
俄罗斯搜索引擎yandex官方入口地址(最新版)

Yandex官方入口网址是https://yandex.com。用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

553

2025.12.24

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

155

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

20

2025.12.24

Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

47

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号