0

0

将一维 NumPy 数组重塑为接近正方形的矩阵

DDD

DDD

发布时间:2025-09-13 21:32:00

|

457人浏览过

|

来源于php中文网

原创

将一维 numpy 数组重塑为接近正方形的矩阵

本文旨在解决将一维 NumPy 数组重塑为尽可能接近正方形的二维矩阵的问题。由于并非所有数字都能完美分解为两个相等的整数,因此我们需要找到两个因子,它们的乘积等于数组的长度,并且这两个因子尽可能接近。本文将介绍两种实现此目标的 Python 代码方法,并提供代码示例和使用注意事项,帮助读者理解和应用这些方法。

在数据处理和科学计算中,经常需要将数据重塑为不同的形状以适应特定的算法或分析需求。当需要将一维 NumPy 数组转换为二维矩阵时,如果目标是创建一个尽可能接近正方形的矩阵,就需要找到两个因子,它们的乘积等于数组的长度,并且这两个因子尽可能接近。

以下介绍两种方法来实现这个目标。

方法一:快速方法

这种方法适用于相对较小的 n 值,它通过遍历小于等于 n 平方根的整数,找到 n 的因子。

import numpy as np
from math import isqrt

def np_squarishrt(n):
    a = np.arange(1, isqrt(n) + 1, dtype=int)
    b = n // a
    i = np.where(a * b == n)[0][-1]
    return a[i], b[i]

# 示例
a = np.arange(500)
rows, cols = np_squarishrt(len(a))
b = a.reshape((rows, cols))
print(b.shape) # 输出 (20, 25)

代码解释:

  1. np_squarishrt(n) 函数接收一个整数 n 作为输入,目标是找到两个整数 p 和 q,使得 p * q == n 并且 p 和 q 尽可能接近。
  2. a = np.arange(1, isqrt(n) + 1, dtype=int) 创建一个从 1 到 n 的整数平方根的 NumPy 数组。
  3. b = n // a 计算 n 除以 a 中每个元素的整数除法结果,并将结果存储在数组 b 中。
  4. i = np.where(a * b == n)[0][-1] 找到 a 和 b 中元素相乘等于 n 的索引,并选择最后一个索引。
  5. return a[i], b[i] 返回找到的两个因子。
  6. 最后,使用 reshape 函数将原始数组重塑为计算出的形状。

注意事项:

STORYD
STORYD

帮你写出让领导满意的精美文稿

下载
  • 此方法在 n 较大时可能效率较低,因为它需要遍历一定范围内的整数。
  • isqrt 函数用于计算整数的平方根,避免使用浮点数。

方法二:通用方法

这种方法使用因式分解和幂集组合来找到最接近的因子。

import numpy as np
from itertools import chain, combinations
from math import isqrt

def factors(n):
    while n > 1:
        for i in range(2, n + 1):
            if n % i == 0:
                n //= i
                yield i
                break

def uniq_powerset(iterable):
    """
    Similar to powerset(it) but without repeats.

    uniq_powerset([1,1,2]) --> (), (1,), (2,), (1, 1), (1, 2), (1, 1, 2)
    """
    s = list(iterable)
    return chain.from_iterable(set(combinations(s, r)) for r in range(len(s)+1))

def squarishrt(n):
    p = isqrt(n)
    if p**2 == n:
        return p, p
    bestp = 1
    f = list(factors(n))
    for t in uniq_powerset(f):
        if 2 * len(t) > len(f):
            break
        p = np.prod(t) if t else 1
        q = n // p
        if p > q:
            p, q = q, p
        if p > bestp:
            bestp = p
    return bestp, n // bestp

# 示例
a = np.arange(500)
b = a.reshape(squarishrt(len(a)))
print(b.shape)

代码解释:

  1. factors(n) 函数使用埃拉托斯特尼筛法找到 n 的所有质因数。
  2. uniq_powerset(iterable) 函数生成输入迭代器中所有元素的唯一组合(幂集)。
  3. squarishrt(n) 函数首先检查 n 是否是完全平方数。如果是,则返回平方根。否则,它找到 n 的所有质因数,并使用 uniq_powerset 函数生成这些因数的唯一组合。然后,它遍历所有组合,找到两个因子 p 和 q,它们的乘积等于 n 并且 p 尽可能接近 n 的平方根。
  4. 最后,使用 reshape 函数将原始数组重塑为计算出的形状。

注意事项:

  • 此方法比第一种方法更通用,但计算成本更高,因为它需要计算因式分解和幂集。
  • uniq_powerset 函数用于避免重复组合,从而提高效率。
  • 此方法可以找到最接近正方形的因子,即使 n 的质因数分解比较复杂。

总结

本文介绍了两种将一维 NumPy 数组重塑为接近正方形的二维矩阵的方法。第一种方法适用于相对较小的 n 值,而第二种方法更通用,但计算成本更高。选择哪种方法取决于具体的需求和性能考虑。在实际应用中,可以根据数组的大小和所需的精度来选择最合适的方法。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号