
本文介绍一种通用、可读性强的递归方法,将具有深层嵌套结构(如按地理层级展开的“国家/州/市/街道/房屋”)的字典列表展平为单一扁平列表,保留每个节点的关键字段(person、city、address、facebooklink),并自动继承完整路径。
在处理具有树状层级关系的数据(例如地理区域嵌套、组织架构或分类目录)时,常遇到类似如下结构:顶层对象包含基础字段(如 "person"、"address"),同时又以同名字段(如 "united states"、"ohio")作为键,其值为子对象列表。这种设计虽利于语义表达,但不利于后续分析、导出或数据库存储——此时需将其递归展平为线性列表,使每一项代表一个独立实体(如一个人在某具体地址层级的信息)。
核心思路是:遍历每个字典,分离「普通字段」与「嵌套列表字段」。普通字段(字符串、数字等)直接保留;而值为 list 且所有元素均为 dict 的字段,则视为递归入口,对其子列表调用相同逻辑,并将结果合并到最终结果中。
以下是一个健壮、无第三方依赖的实现:
def flatten_objects(data):
"""
递归展平嵌套字典列表。
假设结构特征:非列表值为原子字段(person, city, address...);
列表值若全为字典,则为子层级,需递归处理。
"""
result = []
# 支持输入为单个字典或字典列表
if isinstance(data, dict):
data = [data]
for item in data:
if not isinstance(item, dict):
continue
# 提取当前层级的原子字段(非列表,或列表但不全为字典)
base_fields = {}
nested_lists = []
for key, value in item.items():
# 若 value 是列表,且所有元素都是字典 → 视为嵌套层级
if isinstance(value, list) and all(isinstance(e, dict) for e in value):
nested_lists.append(value)
else:
base_fields[key] = value
# 当前层级有效数据必须至少含 person 或 address 等关键字段
if base_fields:
result.append(base_fields)
# 递归处理每个嵌套列表
for nested in nested_lists:
result.extend(flatten_objects(nested))
return result✅ 使用示例:
立即学习“Python免费学习笔记(深入)”;
# 示例数据(已简化缩进便于阅读)
nested_data = [
{
"person": "abc",
"city": "united states",
"facebooklink": "link",
"address": "united states",
"united states": [
{
"person": "cdf",
"city": "ohio",
"facebooklink": "link",
"address": "united states/ohio",
"ohio": [
{
"person": "efg",
"city": "clevland",
"facebooklink": "link",
"address": "united states/ohio/clevland",
"clevland": [
{
"person": "jkl",
"city": "Street A",
"facebooklink": "link",
"address": "united states/ohio/clevland/Street A",
"Street A": [
{
"person": "jkl",
"city": "House 1",
"facebooklink": "link",
"address": "united states/ohio/clevland/Street A/House 1"
}
]
}
]
},
{
"person": "ghi",
"city": "columbus",
"facebooklink": "link",
"address": "united states/ohio/columbus"
}
]
},
{
"person": "abc",
"city": "washington",
"facebooklink": "link",
"address": "united states/washington"
}
]
}
]
flattened = flatten_objects(nested_data)
for i, obj in enumerate(flattened, 1):
print(f"{i}. {obj['person']} — {obj['city']} — {obj['address']}")? 注意事项与最佳实践:
- ✅ 字段一致性保障:本方案不强制要求所有字典拥有完全相同的键,仅提取当前层级存在的字段,避免 KeyError。
- ⚠️ 避免无限递归:确保嵌套结构为有向无环树(DAG),即不存在循环引用(如 A → B → A)。若存在,需额外加入 visited_ids 集合校验。
- ? 扩展性提示:如需保留父级信息(如标注“所属州”),可在递归调用时传入 parent_path 或 ancestors 参数,动态构建字段。
- ? 不推荐 flatten_json 库:flatten_json 设计目标是展平 键名(如转为 "a.b.c": value),而非提取嵌套 值结构,在此场景下不适用,易导致语义丢失。
该方法简洁、可调试、零依赖,适用于任意深度的同类嵌套结构,是处理地理、分类、权限等树形 JSON 数据的理想起点。










