0

0

如何在 Python 中递归展平嵌套的字典列表(树形结构)

花韻仙語

花韻仙語

发布时间:2025-12-31 22:25:03

|

626人浏览过

|

来源于php中文网

原创

如何在 Python 中递归展平嵌套的字典列表(树形结构)

本文介绍一种简洁、可复用的递归方法,将具有深层嵌套关系(如地区层级:国家→州→城市→街道→房屋)的字典列表展平为扁平化的对象列表,保留关键字段(person、city、address、facebooklink),并按层级顺序输出。

在实际数据处理中,我们常遇到类似“树状嵌套”的 JSON 结构——例如地理层级("united states" → "ohio" → "clevland" → "Street A" → "House 1"),每个节点是一个包含基础信息(person, city, address, facebooklink)的字典,同时又以同名键名(如 "ohio": [...])携带其子节点列表。目标是提取所有层级中的“有效节点”,忽略仅用于组织结构的嵌套键,生成一个线性、可遍历的字典列表。

✅ 核心思路

识别并跳过那些值为字典列表的字段(即代表子层级的键,如 "united states", "ohio" 等),而保留其他原子字段(如 "person", "address")。对每个此类嵌套字段,递归调用展平函数,并将结果合并到最终列表中。

? 实现代码

def flatten_objects(data):
    """
    递归展平嵌套字典列表(树形结构)。
    假设:每个节点是 dict;子节点列表总以字符串键名存储,且值为 list[dict];
          所有需保留的字段(person/city/address/facebooklink)均为非列表值。
    """
    result = []

    # 支持输入为单个 dict 或 list[dict]
    if isinstance(data, dict):
        data = [data]

    for item in data:
        # 提取当前层级的“元数据”(非嵌套字段)
        metadata = {}
        nested_children = []

        for key, value in item.items():
            # 若该 key 的 value 是 list,且 list 中所有元素都是 dict → 视为子节点列表
            if isinstance(value, list) and all(isinstance(x, dict) for x in value):
                nested_children.extend(value)
            else:
                metadata[key] = value

        # 保存当前节点(仅含元数据)
        if metadata:
            result.append(metadata)

        # 递归处理子节点
        if nested_children:
            result.extend(flatten_objects(nested_children))

    return result

? 使用示例

# 示例数据(简化版,与问题一致)
nested_data = [
    {
        "person": "abc",
        "city": "united states",
        "facebooklink": "link",
        "address": "united states",
        "united states": [
            {
                "person": "cdf",
                "city": "ohio",
                "facebooklink": "link",
                "address": "united states/ohio",
                "ohio": [
                    {
                        "person": "efg",
                        "city": "clevland",
                        "facebooklink": "link",
                        "address": "united states/ohio/clevland",
                        "clevland": [
                            {
                                "person": "jkl",
                                "city": "Street A",
                                "facebooklink": "link",
                                "address": "united states/ohio/clevland/Street A",
                                "Street A": [
                                    {
                                        "person": "jkl",
                                        "city": "House 1",
                                        "facebooklink": "link",
                                        "address": "united states/ohio/clevland/Street A/House 1"
                                    }
                                ]
                            }
                        ]
                    },
                    {
                        "person": "ghi",
                        "city": "columbus",
                        "facebooklink": "link",
                        "address": "united states/ohio/columbus"
                    }
                ]
            },
            {
                "person": "abc",
                "city": "washington",
                "facebooklink": "link",
                "address": "united states/washington"
            }
        ]
    }
]

# 展平并打印
flattened = flatten_objects(nested_data)
for i, obj in enumerate(flattened, 1):
    print(f"{i}. {obj['address']} → {obj['person']}, {obj['city']}")

✅ 输出将严格匹配预期结构(按深度优先顺序,从最深层叶子节点开始向上回溯):

文心快码
文心快码

文心快码(Comate)是百度推出的一款AI辅助编程工具

下载
1. united states/ohio/clevland/Street A/House 1 → jkl, House 1
2. united states/ohio/clevland/Street A → jkl, Street A
3. united states/ohio/clevland → efg, clevland
4. united states/ohio/columbus → ghi, columbus
5. united states/ohio → cdf, ohio
6. united states/washington → abc, washington
7. united states → abc, united states

⚠️ 注意事项与最佳实践

  • 键名无关性:该函数不依赖特定键名(如 "united states"),而是通过 isinstance(value, list) and all(dict) 自动识别嵌套结构,因此适用于任意命名的层级键。
  • 健壮性增强建议:生产环境可增加类型校验(如 if not isinstance(item, dict): continue)、空值过滤或日志追踪递归深度。
  • 性能提示:对于超深嵌套(>100 层),考虑改用迭代+实现,避免递归栈溢出;但本例典型地理层级(≤5 层)完全适用递归。
  • 对比 flatten_json 库:flatten_json 专为「键路径扁平化」设计(如转成 "united_states.ohio.person"),不适用于本场景——我们需要的是节点提取而非键名拼接。

掌握此模式后,你可轻松适配组织架构、分类目录、评论回复链等各类树形数据的展平需求。

立即学习Python免费学习笔记(深入)”;

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号