0

0

如何使用 Numba 加速 Python 中的嵌套循环

DDD

DDD

发布时间:2025-08-27 15:34:01

|

317人浏览过

|

来源于php中文网

原创

如何使用 numba 加速 python 中的嵌套循环

本文旨在提供一种使用 Numba 库加速 Python 中嵌套循环计算的方法。通过使用 Numba 的 JIT 编译和并行计算功能,可以将原本耗时较长的嵌套循环代码的执行速度显著提高,从而更高效地完成计算任务。文章将提供详细的代码示例和优化技巧,帮助读者理解和应用这些技术。

使用 Numba 加速嵌套循环

在 Python 中,嵌套循环可能会导致代码执行速度缓慢,尤其是在循环次数较多时。为了解决这个问题,可以使用 Numba 库,它是一个即时 (JIT) 编译器,可以将 Python 代码编译成机器码,从而提高执行速度。

Numba 的 njit 装饰器

Numba 提供了一个名为 njit 的装饰器,可以将其应用于函数,以指示 Numba 对该函数进行 JIT 编译。以下是一个简单的示例:

from numba import njit

@njit
def my_function():
    # 你的代码
    pass

将 @njit 装饰器添加到函数后,Numba 将在首次调用该函数时对其进行编译。后续调用将直接执行编译后的机器码,从而提高执行速度。

立即学习Python免费学习笔记(深入)”;

示例:加速四重嵌套循环

考虑以下四重嵌套循环的代码:

def original_function():
    for a in range(-100, 101):
        for b in range(-100, 101):
            for c in range(-100, 101):
                for d in range(-100, 101):
                    n = (2.0**a) * (3.0**b) * (5.0**c) * (7.0**d)
                    v = n - 0.3048
                    if abs(v) <= 1e-06:
                        print(
                            "a=",
                            a,
                            ", b=",
                            b,
                            ", c=",
                            c,
                            ", d=",
                            d,
                            ", the number=",
                            n,
                            ", error=",
                            abs(n - 3.048),
                        )

这段代码计算 2**a * 3**b * 5**c * 7**d 的值,并检查其是否接近 0.3048。如果没有 Numba,这段代码的执行时间会很长。

Cutout.Pro抠图
Cutout.Pro抠图

AI批量抠图去背景

下载

现在,使用 Numba 的 njit 装饰器来加速这段代码:

from numba import njit

@njit
def optimized_function():
    for a in range(-100, 101):
        for b in range(-100, 101):
            for c in range(-100, 101):
                for d in range(-100, 101):
                    n = (2.0**a) * (3.0**b) * (5.0**c) * (7.0**d)
                    v = n - 0.3048
                    if abs(v) <= 1e-06:
                        print(
                            "a=",
                            a,
                            ", b=",
                            b,
                            ", c=",
                            c,
                            ", d=",
                            d,
                            ", the number=",
                            n,
                            ", error=",
                            abs(n - 3.048),
                        )

通过添加 @njit 装饰器,可以将代码的执行速度显著提高。

使用 prange 进行并行计算

Numba 还提供了一个名为 prange 的函数,可以用于并行执行循环。这对于具有大量迭代的循环非常有用。要使用 prange,需要将 @njit 装饰器的 parallel 参数设置为 True。

from numba import njit, prange

@njit(parallel=True)
def parallel_function():
    for a in prange(-100, 101):
        # 你的代码
        pass

以下是如何使用 prange 加速四重嵌套循环的代码:

from numba import njit, prange

@njit(parallel=True)
def optimized_parallel_function():
    for a in prange(-100, 101):
        i_a = 2.0**a
        for b in prange(-100, 101):
            i_b = i_a * 3.0**b
            for c in prange(-100, 101):
                i_c = i_b * 5.0**c
                for d in prange(-100, 101):
                    n = i_c * (7.0**d)
                    v = n - 0.3048
                    if abs(v) <= 1e-06:
                        print(
                            "a=",
                            a,
                            ", b=",
                            b,
                            ", c=",
                            c,
                            ", d=",
                            d,
                            ", the number=",
                            n,
                            ", error=",
                            abs(n - 3.048),
                        )

在这个例子中,我们使用 prange 替换了 range,并将 @njit 装饰器的 parallel 参数设置为 True。此外,为了减少重复计算,我们存储了中间结果 i_a, i_b, i_c。这使得 Numba 能够并行执行循环,从而进一步提高执行速度。

注意事项

  • 数据类型: Numba 在处理 NumPy 数组和基本数据类型时效果最佳。确保你的代码使用了这些数据类型。
  • 编译时间: 首次调用使用 @njit 装饰的函数时,会有一定的编译时间。但是,后续调用将更快。
  • 并行计算: 使用 prange 进行并行计算时,请确保你的计算机具有多个 CPU 核心,以充分利用并行性。
  • 避免 Python 对象: 尽量避免在 Numba 编译的函数中使用 Python 对象,因为这可能会降低性能。

总结

通过使用 Numba 的 njit 装饰器和 prange 函数,可以显著提高 Python 中嵌套循环的执行速度。这对于需要处理大量数据的计算任务非常有用。记住,在优化代码时,请考虑数据类型、并行性和避免 Python 对象等因素。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号