0

0

Pandas DataFrame 分组计算:按行应用自定义函数

DDD

DDD

发布时间:2025-08-25 12:06:24

|

206人浏览过

|

来源于php中文网

原创

pandas dataframe 分组计算:按行应用自定义函数

本文介绍了如何使用 Pandas 在 DataFrame 分组后,针对每个分组的行应用自定义函数计算特定值。重点在于利用 groupby() 和 transform() 方法,结合条件判断,实现对满足特定条件的分组进行计算,并将结果广播回原始 DataFrame。通过本文,你将掌握一种高效处理分组数据的技巧,并能灵活应用于各种数据分析场景。

Pandas 提供了强大的分组(Grouping)功能,允许你根据一列或多列的值将 DataFrame 拆分成多个组。在许多数据分析场景中,我们需要在每个组内进行计算,并将结果应用回原始 DataFrame 的每一行。本文将详细介绍如何使用 Pandas 的 groupby() 和 transform() 方法,结合条件判断,实现按行应用自定义函数计算特定值。

使用 groupby() 和 transform() 进行分组计算

groupby() 方法用于将 DataFrame 按照指定的列进行分组。transform() 方法则允许你对每个分组应用一个函数,并将结果广播回原始 DataFrame。这与 agg() 方法不同,agg() 方法会返回聚合后的结果,而 transform() 方法会返回与原始 DataFrame 相同大小的结果。

以下是一个示例,演示如何使用 groupby() 和 transform() 计算每个 ID 和年份组合的平均回报率和中位数回报率,并将结果乘以 12。

Narration Box
Narration Box

Narration Box是一种语音生成服务,用户可以创建画外音、旁白、有声读物、音频页面、播客等

下载
import pandas as pd
import numpy as np

# 创建示例 DataFrame
df = pd.DataFrame(
         {"CALDT": ["1980-01-31", "1980-02-28", "1980-03-31",
                    "1980-01-31", "1980-02-28", "1980-03-31",
                    "1980-01-31"],
          "ID": [1, 1, 1,
                 2, 2, 2,
                 3],
          "Return": [0.02, 0.05, 0.10,
                     0.05, -0.02, 0.03,
                     -0.03]
          })

df['CALDT'] = pd.to_datetime(df['CALDT'])

# 按照 ID 和年份进行分组
g = df.groupby(["ID", df.CALDT.dt.year])

# 计算平均回报率和中位数回报率,并乘以 12
return_stats = pd.DataFrame({
                     "Mean_Return": g["Return"].transform("mean").mul(12),
                     "Median_Return": g["Return"].transform("median").mul(12)
                  }).where(g["CALDT"].transform("nunique").ge(2))

# 将计算结果与原始 DataFrame 合并
df = df.join(return_stats)

print(df)

代码解释:

  1. 创建 DataFrame: 首先,我们创建一个包含日期 (CALDT)、ID (ID) 和回报率 (Return) 的 DataFrame。
  2. 转换为 datetime: 将 CALDT 列转换为 datetime 类型。
  3. 分组: 使用 groupby(["ID", df.CALDT.dt.year]) 按照 ID 和 CALDT 的年份进行分组。
  4. 计算统计量: 使用 transform() 方法计算每个分组的平均回报率 (Mean_Return) 和中位数回报率 (Median_Return),并将结果乘以 12。transform() 方法会将计算结果广播回原始 DataFrame 的每一行。
  5. 条件判断: 使用 where() 方法,结合 g["CALDT"].transform("nunique").ge(2),判断每个分组中唯一日期数量是否大于等于 2。如果不满足条件,则将对应的 Mean_Return 和 Median_Return 设置为 NaN。
  6. 合并结果: 使用 join() 方法将计算得到的 return_stats DataFrame 与原始 DataFrame 合并。

注意事项

  • 确保分组列的数据类型正确。在上面的例子中,我们需要将 CALDT 列转换为 datetime 类型,才能正确提取年份。
  • transform() 方法返回的结果必须与原始 DataFrame 的大小相同。
  • where() 方法用于根据条件判断是否保留计算结果。如果条件不满足,则将结果设置为 NaN。

总结

本文介绍了如何使用 Pandas 的 groupby() 和 transform() 方法,结合条件判断,实现按行应用自定义函数计算特定值。这种方法可以高效地处理分组数据,并能灵活应用于各种数据分析场景。通过掌握这种技巧,你可以更轻松地进行复杂的数据处理和分析。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

298

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

216

2025.10.31

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

454

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

264

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

499

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

71

2025.09.08

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号