0

0

将 JSON 数据加载到 Pandas DataFrame 中

DDD

DDD

发布时间:2025-08-24 17:04:19

|

202人浏览过

|

来源于php中文网

原创

将 JSON 数据加载到 Pandas DataFrame 中

本文介绍了如何使用 Python 和 Pandas 库将 JSON 数据转换为 DataFrame。通过解析 JSON 字符串并利用 pd.DataFrame 函数,可以将 JSON 数据中的数据部分和列名部分结合起来,快速构建一个结构化的 DataFrame,方便后续的数据分析和处理。文章提供了详细的代码示例,帮助读者理解并应用该方法。

使用 Pandas 将 JSON 数据加载到 DataFrame

在数据处理过程中,经常需要将 json 格式的数据转换为更易于分析和操作的 dataframe 结构。pandas 提供了便捷的方法来实现这一转换。

步骤 1:导入必要的库

首先,需要导入 pandas 库来创建和操作 DataFrame,以及 json 库来解析 JSON 字符串。

import pandas as pd
import json

步骤 2:加载 JSON 数据

假设你有一个 JSON 字符串,例如:

jstr = """
{
    "data": [
        [
            "2023-01-01",
            50,
            50,
            82,
            0.0,
            4.32,
            0.1,
            0
        ],
        [
            "2023-01-02",
            298,
            315,
            550,
            0.0,
            4.920634920634921,
            0.13758389261744966,
            0
        ],
        [
            "2023-01-03",
            709,
            724,
            1051,
            0.0,
            3.064917127071823,
            0.0930888575458392,
            0
        ],
        [
            "2023-01-04",
            264,
            292,
            660,
            0.0,
            6.493150684931507,
            0.2803030303030303,
            0
        ],
        [
            "2023-01-05",
            503,
            523,
            882,
            0.0,
            3.7667304015296366,
            0.14314115308151093,
            0
        ],
        [
            "2023-01-06",
            423,
            437,
            735,
            0.0,
            3.5652173913043477,
            0.12056737588652482,
            0
        ],
        [
            "2023-01-07",
            97,
            102,
            146,
            0.0,
            3.5294117647058822,
            0.13402061855670103,
            0
        ],
        [
            "2023-01-08",
            70,
            71,
            169,
            0.0,
            6.52112676056338,
            0.1,
            0
        ],
        [
            "2023-01-09",
            301,
            337,
            721,
            0.0,
            5.9614243323442135,
            0.26578073089701,
            0
        ],
        [
            "2023-01-10",
            313,
            352,
            678,
            0.0,
            5.8522727272727275,
            0.2364217252396166,
            0
        ]
    ],
    "meta": {
        "columns": [
            "timestamp__to_date",
            "visitors",
            "sessions",
            "page_views",
            "goal_conversion_rate",
            "events_per_session",
            "returning_visitors_rate",
            "goal_conversions"
        ],
        "count": 181
    }
}
"""

使用 json.loads() 函数将 JSON 字符串解析为 Python 字典。

data = json.loads(jstr)

步骤 3:创建 DataFrame

Designify
Designify

拖入图片便可自动去除背景✨

下载

利用 Pandas 的 pd.DataFrame() 函数,将解析后的 JSON 数据转换为 DataFrame。data['data'] 包含了数据,而 data['meta']['columns'] 包含了列名。

df = pd.DataFrame(data['data'], columns=data['meta']['columns'])

步骤 4:查看结果

打印 DataFrame,查看转换结果。

print(df)

输出结果如下:

  timestamp__to_date  visitors  sessions  page_views  goal_conversion_rate  events_per_session  returning_visitors_rate  goal_conversions
0         2023-01-01        50        50          82                   0.0            4.320000                 0.100000                 0
1         2023-01-02       298       315         550                   0.0            4.920635                 0.137584                 0
2         2023-01-03       709       724        1051                   0.0            3.064917                 0.093089                 0
3         2023-01-04       264       292         660                   0.0            6.493151                 0.280303                 0
4         2023-01-05       503       523         882                   0.0            3.766730                 0.143141                 0
5         2023-01-06       423       437         735                   0.0            3.565217                 0.120567                 0
6         2023-01-07        97       102         146                   0.0            3.529412                 0.134021                 0
7         2023-01-08        70        71         169                   0.0            6.521127                 0.100000                 0
8         2023-01-09       301       337         721                   0.0            5.961424                 0.265781                 0
9         2023-01-10       313       352         678                   0.0            5.852273                 0.236422                 0

注意事项

  • 确保 JSON 数据的格式正确,data 字段包含数据列表,meta.columns 字段包含列名列表。
  • 如果 JSON 数据来自文件,可以使用 json.load() 函数读取文件内容。
  • 可以根据实际需求对 DataFrame 进行进一步处理,例如数据清洗、转换等。

总结

使用 Pandas 将 JSON 数据加载到 DataFrame 是一种高效且常用的数据处理方法。通过简单的几行代码,就可以将复杂的 JSON 数据转换为结构化的 DataFrame,方便后续的数据分析和挖掘。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

717

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

744

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

700

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号