0

0

Python中高效将结构化JSON数据载入Pandas DataFrame

聖光之護

聖光之護

发布时间:2025-08-24 16:50:01

|

328人浏览过

|

来源于php中文网

原创

Python中高效将结构化JSON数据载入Pandas DataFrame

本教程详细介绍了如何使用Python和Pandas库,将一种常见的分离式JSON数据结构(数据行与列名分别存储)高效地转换为结构化的Pandas DataFrame。通过直接利用DataFrame构造函数的data和columns参数,能够实现数据的准确映射和快速处理,为后续数据分析奠定基础。

引言:JSON数据与表格化转换

在现代数据处理中,json(javascript object notation)作为一种轻量级的数据交换格式,被广泛应用于api响应、配置文件和数据存储等场景。然而,许多数据分析任务需要将非结构化或半结构化的json数据转换为更易于操作的表格形式,例如pandas dataframe。当json数据以一种特定的结构组织时,即数据行和列名分别存储在不同的字段中,pandas提供了极其简洁高效的方法来实现这种转换。

JSON数据结构解析

我们经常会遇到如下所示的JSON结构,其中包含两类关键信息:实际的数据记录和对应的列名。

{
    "data": [
        [
            "2023-01-01",
            50,
            50,
            82,
            0.0,
            4.32,
            0.1,
            0
        ],
        // ... 更多数据行
        [
            "2023-01-10",
            313,
            352,
            678,
            0.0,
            5.8522727272727275,
            0.2364217252396166,
            0
        ]
    ],
    "meta": {
        "columns": [
            "timestamp__to_date",
            "visitors",
            "sessions",
            "page_views",
            "goal_conversion_rate",
            "events_per_session",
            "returning_visitors_rate",
            "goal_conversions"
        ],
        "count": 181
    }
}

从上述结构可以看出:

  • data 键对应一个列表,其中每个子列表代表一行数据。这些子列表的元素顺序是固定的。
  • meta 键下的 columns 键对应另一个列表,其中包含了所有列的名称。这些名称的顺序与 data 列表中子列表的元素顺序一一对应。

这种结构非常适合直接映射到Pandas DataFrame,因为DataFrame的构造函数可以直接接受行数据和列名列表。

使用Pandas进行数据转换

Pandas库的DataFrame构造函数提供了一种直接且高效的方式来处理这种类型的JSON数据。核心思路是:

立即学习Python免费学习笔记(深入)”;

Groq
Groq

GroqChat是一个全新的AI聊天机器人平台,支持多种大模型语言,可以免费在线使用。

下载
  1. 首先,解析JSON字符串,将其转换为Python字典。
  2. 然后,从解析后的字典中提取实际的数据列表(即data['data'])。
  3. 接着,提取列名列表(即data['meta']['columns'])。
  4. 最后,将这两个列表分别作为pd.DataFrame构造函数的data和columns参数传入,即可构建出完整的DataFrame。

示例代码

以下是实现这一转换的Python代码示例:

import json
import pandas as pd

# 示例JSON字符串
json_string = """
{
    "data": [
        [
            "2023-01-01",
            50,
            50,
            82,
            0.0,
            4.32,
            0.1,
            0
        ],
        [
            "2023-01-02",
            298,
            315,
            550,
            0.0,
            4.920634920634921,
            0.13758389261744966,
            0
        ],
        [
            "2023-01-03",
            709,
            724,
            1051,
            0.0,
            3.064917127071823,
            0.0930888575458392,
            0
        ],
        [
            "2023-01-04",
            264,
            292,
            660,
            0.0,
            6.493150684931507,
            0.2803030303030303,
            0
        ],
        [
            "2023-01-05",
            503,
            523,
            882,
            0.0,
            3.7667304015296366,
            0.14314115308151093,
            0
        ],
        [
            "2023-01-06",
            423,
            437,
            735,
            0.0,
            3.5652173913043477,
            0.12056737588652482,
            0
        ],
        [
            "2023-01-07",
            97,
            102,
            146,
            0.0,
            3.5294117647058822,
            0.13402061855670103,
            0
        ],
        [
            "2023-01-08",
            70,
            71,
            169,
            0.0,
            6.52112676056338,
            0.1,
            0
        ],
        [
            "2023-01-09",
            301,
            337,
            721,
            0.0,
            5.9614243323442135,
            0.26578073089701,
            0
        ],
        [
            "2023-01-10",
            313,
            352,
            678,
            0.0,
            5.8522727272727275,
            0.2364217252396166,
            0
        ]
    ],
    "meta": {
        "columns": [
            "timestamp__to_date",
            "visitors",
            "sessions",
            "page_views",
            "goal_conversion_rate",
            "events_per_session",
            "returning_visitors_rate",
            "goal_conversions"
        ],
        "count": 181
    }
}
"""

# 1. 解析JSON字符串
data = json.loads(json_string)

# 2. 从解析后的数据中提取行数据和列名
df_data = data['data']
df_columns = data['meta']['columns']

# 3. 使用Pandas DataFrame构造函数创建DataFrame
df = pd.DataFrame(df_data, columns=df_columns)

# 打印结果
print(df)

输出结果:

  timestamp__to_date  visitors  sessions  page_views  goal_conversion_rate  \
0         2023-01-01        50        50          82                   0.0   
1         2023-01-02       298       315         550                   0.0   
2         2023-01-03       709       724        1051                   0.0   
3         2023-01-04       264       292         660                   0.0   
4         2023-01-05       503       523         882                   0.0   
5         2023-01-06       423       437         735                   0.0   
6         2023-01-07        97       102         146                   0.0   
7         2023-01-08        70        71         169                   0.0   
8         2023-01-09       301       337         721                   0.0   
9         2023-01-10       313       352         678                   0.0   

   events_per_session  returning_visitors_rate  goal_conversions  
0            4.320000                 0.100000                 0  
1            4.920635                 0.137584                 0  
2            3.064917                 0.093089                 0  
3            6.493151                 0.280303                 0  
4            3.766730                 0.143141                 0  
5            3.565217                 0.120567                 0  
6            3.529412                 0.134021                 0  
7            6.521127                 0.100000                 0  
8            5.961424                 0.265781                 0  
9            5.852273                 0.236422                 0  

代码解析与优势

  • import json: 导入Python内置的json库,用于解析JSON字符串。
  • import pandas as pd: 导入Pandas库,通常约定简写为pd。
  • data = json.loads(json_string): 这一步将JSON字符串反序列化为Python字典。这是处理JSON数据的第一步。
  • df = pd.DataFrame(data['data'], columns=data['meta']['columns']): 这是核心步骤。
    • data['data'] 提取了JSON中包含所有数据行的列表。Pandas DataFrame构造函数能够直接接受这种列表的列表作为其data参数,将其解释为行和列。
    • data['meta']['columns'] 提取了JSON中包含所有列名的列表。将其作为columns参数传入,Pandas会根据这个列表来命名DataFrame的列,并确保数据与列名正确对齐。

这种方法的主要优势在于其简洁性高效性。它避免了手动迭代数据、创建字典列表或进行复杂的列映射,而是直接利用了Pandas DataFrame构造函数的强大功能,一行代码即可完成复杂的数据转换。这不仅减少了代码量,也提高了代码的可读性和执行效率。

注意事项与总结

  1. JSON结构一致性: 确保传入的JSON数据结构与示例保持一致,即data和meta.columns键名及其内部结构是正确的。如果JSON结构有变,需要相应调整提取df_data和df_columns的路径。
  2. 数据类型推断: Pandas在创建DataFrame时会自动尝试推断列的数据类型。对于日期、数字等类型,通常能正确识别。如果需要更精细的控制,可以在创建DataFrame后使用df.astype()或pd.to_datetime()等方法进行类型转换。
  3. 错误处理: 在实际应用中,建议对json.loads()操作进行try-except异常处理,以应对无效的JSON字符串。同时,检查data和meta.columns键是否存在,防止因键不存在而引发KeyError。

通过本教程,您应该已经掌握了如何使用Python和Pandas将特定结构的JSON数据高效、准确地转换为DataFrame。这种技术在处理来自各种API或日志文件的数据时非常实用,为后续的数据清洗、分析和可视化奠定了坚实的基础。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

717

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

743

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

700

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号