0

0

详解如何导入和使用pandas库

WBOY

WBOY

发布时间:2024-01-24 10:50:06

|

4640人浏览过

|

来源于php中文网

原创

pandas库的导入及使用方法详解

Pandas库是Python中最常用的数据处理和分析工具之一,它提供了丰富的数据结构和函数,能够高效地处理和分析大规模的数据集。本文将详细介绍Pandas库的导入和使用方法,并给出具体的代码示例。

一、Pandas库的导入
Pandas库的导入非常简单,只需要在代码中添加一行导入语句即可:

import pandas as pd
这行代码将导入整个Pandas库,并将其命名为pd,这是使用Pandas库的惯例写法。

二、Pandas数据结构
Pandas库提供了两种主要的数据结构:Series和DataFrame。

  1. Series
    Series是一维标签化的数组,可以容纳任何数据类型(整数、浮点数、字符串等),类似于带有索引的NumPy数组。可以通过以下方式创建一个Series:

data = pd.Series([1, 3, 5, np.nan, 6, 8])
print(data)
这段代码会输出以下结果:

0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
Series的索引位于左侧,值位于右侧。可以使用索引访问和操作Series中的元素。

  1. DataFrame
    DataFrame是一个二维的表格型数据结构,类似于关系型数据库中的表。可以通过以下方式创建一个DataFrame:

data = {'name': ['Alice', 'Bob', 'Charlie'],

露阳PHP企业系统1.0
露阳PHP企业系统1.0

1.) 将所有文件解压到php环境中,本程序才用smarty+php+mysql设计。如果运行不了,请修改hhy文件夹下的smarty.php文件改法请看说明2.) 修改configs下的config.inc.php下的连接数据库的密码和用户名3.) 本程序没有做安全页面,人工导入sql.inc到mysql数据库。管理员初始化帐号为admin,密码为hhy。后台地址:http://你的网站地址/h

下载
    'age': [25, 26, 27],
    'score': [90, 92, 85]}

df = pd.DataFrame(data)
print(df)
这段代码会输出以下结果:

name  age  score

0 Alice 25 90
1 Bob 26 92
2 Charlie 27 85
DataFrame的列名位于上方,每一列可以有不同的数据类型。可以使用列名和行索引来访问和操作DataFrame中的数据。

三、数据读取与写入
Pandas库支持从多种数据源中读取数据,包括CSV、Excel、SQL数据库等。可以使用以下方法读取和写入数据:

  1. 读取CSV文件
    df = pd.read_csv('data.csv')
    其中,data.csv为待读取的CSV文件,利用read_csv()方法可以将CSV文件中的数据读取为DataFrame。
  2. 读取Excel文件
    df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
    其中,data.xlsx为待读取的Excel文件,sheet_name参数指定要读取的工作表名称。
  3. 读取SQL数据库
    import sqlite3
    conn = sqlite3.connect('database.db')
    query = 'SELECT * FROM table_name'
    df = pd.read_sql(query, conn)
    其中,database.db为待读取的SQL数据库文件,table_name为待读取的表名,利用read_sql()方法可以执行SQL查询并将结果读取为DataFrame。
  4. 写入数据
    df.to_csv('output.csv')
    可以利用to_csv()方法将DataFrame中的数据写入到CSV文件中。

四、数据清洗与转换
Pandas库提供了丰富的函数和方法来进行数据清洗和转换,包括缺失值处理、数据筛选、数据排序等。

  1. 缺失值处理
    df.dropna():删除包含缺失值的行或列
    df.fillna(value):填充缺失值为指定的值
    df.interpolate():根据已知值的线性插值填充缺失值
  2. 数据筛选
    df[df['age'] > 25]:筛选年龄大于25的行
    df[(df['age'] > 25) & (df['score'] > 90)]:筛选年龄大于25且分数大于90的行
  3. 数据排序
    df.sort_values(by='score', ascending=False):按照分数降序排序
    df.sort_index():按照索引排序
    五、数据分析与统计
    Pandas库提供了丰富的统计函数和方法,可以用于数据分析和计算。
  4. 描述性统计
    df.describe():计算各列的描述性统计信息,包括均值、标准差、最小值、最大值等
  5. 数据聚合
    df.groupby('name').sum():按照姓名分组,并计算每个组的总和
  6. 累计计算
    df.cumsum():计算每一列的累计和
  7. 相关分析
    df.corr():计算列之间的相关系数
    df.cov():计算列之间的协方差

以上只是Pandas库的一部分功能和用法,更多详细用法可参考Pandas官方文档。通过灵活运用Pandas库提供的功能,可以高效地进行数据处理和分析,并为后续的机器学习和数据挖掘工作提供有力支持。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号