0

0

查找一个度序列是否能够形成一个简单图 | Havel-Hakimi算法

王林

王林

发布时间:2023-09-07 12:05:02

|

2189人浏览过

|

来源于tutorialspoint

转载

查找一个度序列是否能够形成一个简单图 | havel-hakimi算法

在图论中,度链表示顶点度的顺序。确定度的顺序是否可以产生一个简单图或者一个没有平行或自环边的图是至关重要的。在本博客中,我们将探讨三种解决这个问题的方法,重点介绍Havel-Hakimi算法。我们将详细介绍每种技术使用的算法,提供相应的代码表示和适当的标题,并展示每种方法的独特结果。

使用的方法

  • Havel−Hakimi算法

  • 排序和检查

  • 直接计数

Havel− Hakimi算法

Havel−Hakimi算法是一种常用的技术,用于确定一个度序列是否可以生成一个简单图。在达到初始情况之前,逐个消除度数。

算法

  • 使用以下算法按降序排列学位系列。

  • 如果度链为零,则返回true(它创建一个简单的图)。

  • 如果初始度数不利或高于剩余度数之和,则返回false(无法形成简单图)。

  • 从列表中减去初始度数。

  • 从以下 'k' 度中减去1,其中 'k' 是被删除的度数的值。

  • 再次从步骤1-5执行。

Example

#include 
#include 
#include 

using namespace std;

bool havelHakimi(vector& degrees) {
    sort(degrees.rbegin(), degrees.rend()); // Sort in non-increasing order

    while (!degrees.empty() && degrees.front() > 0) {
        int firstDegree = degrees.front();
        degrees.erase(degrees.begin()); // Remove the first degree

        if (firstDegree > degrees.size()) {
            return false;
        }

        for (int i = 0; i < firstDegree; ++i) {
            degrees[i]--;
        }

        sort(degrees.rbegin(), degrees.rend()); // Re-sort the sequence
    }

    return degrees.empty(); // Return true if the sequence is empty
}

int main() {
    // Test the havelHakimi function
    vector degrees = {3, 1, 2, 3, 1, 0};
    bool result = havelHakimi(degrees);

    if (result) {
        cout << "The sequence can represent a valid graph." << endl;
    } else {
        cout << "The sequence cannot represent a valid graph." << endl;
    }

    return 0;
}

输出

The sequence cannot represent a valid graph.

Sort & Check

的中文翻译为:

排序和检查

第二种方法是将度数序列按非递减顺序排序,并重复确定是否满足直接图的先决条件。

速创猫AI简历
速创猫AI简历

一键生成高质量简历

下载

算法

  • 使用以下算法将学位系列按降序排序。

  • 重复这个过程,针对系列中的每个度数。

  • 如果当前级别不利或数量超过可用学位的数量,则返回false。

  • 如果每个度数都通过测试,则返回true(它创建了一个直观的图形)。

Example

#include 
#include 
#include 

using namespace std;

bool havelHakimiAlgorithm(vector& degrees) {
    // Sort the degree sequence in non-increasing order
    sort(degrees.rbegin(), degrees.rend());

    while (!degrees.empty() && degrees[0] > 0) {
        int highestDegree = degrees[0];
        int n = degrees.size();

        // Check if the highest degree is greater than the number of remaining vertices
        if (highestDegree >= n) {
            return false;
        }

        // Remove the highest degree vertex
        degrees.erase(degrees.begin());

        // Decrease the degrees of its neighbors
        for (int i = 0; i < highestDegree; ++i) {
            degrees[i]--;
        }

        // Sort the degree sequence again
        sort(degrees.rbegin(), degrees.rend());
    }

    // If all degrees are zero, the degree sequence can form a simple graph
    return degrees.empty();
}

int main() {
    // Example degree sequence
    vector degrees = {3, 3, 2, 2, 1};

    // Check if the degree sequence can form a simple graph
    bool canFormGraph = havelHakimiAlgorithm(degrees);

    if (canFormGraph) {
        cout << "The degree sequence can form a simple graph." << endl;
    } else {
        cout << "The degree sequence cannot form a simple graph." << endl;
    }

    return 0;
}

输出

The degree sequence cannot form a simple graph.

直接计数

第四种方法只是简单地测量满足预定条件的级别数量,以确定序列是否可以表示为简单图。

算法

  • 确定大于或等于0的度数的数量,并将结果保存在'n'中。

  • 如果'n'是奇数(它不能形成一个简单图),则返回false。

  • 测量并保持“k”中的非零度数,这些度数比左度数多。

  • 如果'k'高于剩余度数的数量,则返回false。

  • 如果所有要求都满足(它创建一个基本图),则返回true。

Example

#include 
#include 

using namespace std;

bool directCount(vector& degrees) {
    int n = 0;
    int k = 0;

    for (int degree : degrees) {
        if (degree >= 0) {
            n++;
            if (degree > degrees.size() - n) {
                k++;
            }
        }
    }

    return (n % 2 == 0) && (k <= n);
}

int main() {
    // Test the directCount function
    vector degrees = {3, 1, 2, 3, 1, 0};
    bool result = directCount(degrees);

    if (result) {
        cout << "The sequence can represent a valid graph." << endl;
    } else {
        cout << "The sequence cannot represent a valid graph." << endl;
    }

    return 0;
}

输出

The sequence can represent a valid graph.

结论

在这篇文章中,我们探讨了三种不同的方法来确定一个特定的度序列是否能够形成一个简单的图形。我们讨论了Havel−Hakimi算法,它采用逐步减少的方法来确定图形的形成是否可行。我们还研究了度数组方法、直接计数方法和排序和检查方法,每种方法都有不同的策略来验证基本图形的条件。通过理解和使用这些技术,您可以快速判断一个图形是否可以从特定的度序列中创建。选择的方法将取决于当前度序列的特定规格和特征。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
sort排序函数用法
sort排序函数用法

sort排序函数的用法:1、对列表进行排序,默认情况下,sort函数按升序排序,因此最终输出的结果是按从小到大的顺序排列的;2、对元组进行排序,默认情况下,sort函数按元素的大小进行排序,因此最终输出的结果是按从小到大的顺序排列的;3、对字典进行排序,由于字典是无序的,因此排序后的结果仍然是原来的字典,使用一个lambda表达式作为key参数的值,用于指定排序的依据。

379

2023.09.04

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

61

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

41

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

32

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

41

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

198

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

9

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

8

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号