0

0

Pandas DataFrame条件筛选与数值替换教程

碧海醫心

碧海醫心

发布时间:2025-11-03 10:36:56

|

825人浏览过

|

来源于php中文网

原创

Pandas DataFrame条件筛选与数值替换教程

本教程详细讲解如何在pandas dataframe中根据条件进行数值筛选和替换,避免布尔值输出。我们将探讨使用逻辑运算符 `&` 进行多条件筛选、利用 `|` 运算符替换不符合条件的数值为 `nan`,以及高效地使用 `clip()` 方法将数值限定在指定范围内。掌握这些技巧能帮助用户精确处理dataframe数据,确保输出为数值结果而非布尔 series。

在数据分析中,我们经常需要根据特定条件从Pandas DataFrame中筛选数据或替换数值。然而,初学者在使用多个条件时,可能会遇到返回布尔 Series 而非期望数值结果的问题。本教程将深入探讨如何正确执行这些操作,确保获得数值输出,并介绍多种实现方式以满足不同需求。

一、理解条件筛选中的布尔 Series 问题

当我们在Pandas中对某一列应用条件时,例如 df['column'] >= value,Pandas会返回一个布尔 Series,其中每个元素对应原 Series 中是否满足条件。当尝试组合多个条件时,如果不注意运算符优先级,就容易出错。

例如,以下代码尝试筛选出 parallax 列中值介于 300 和 900 之间的数据:

import pandas as pd
import numpy as np

# 示例数据
data = {
    'parallax': [567.17, 677.52, 422.74, 638.04, 9927.29, 1142.04, 218.38, 506.34, np.nan, np.nan]
}
df = pd.DataFrame(data)

# 错误尝试:
# new_df = df.loc[df['parallax'] >= 300, 'parallax'] <= 900
# 这种写法会先执行 df.loc[df['parallax'] >= 300, 'parallax'],
# 得到一个 Series,然后尝试将这个 Series 与 <= 900 进行比较,
# 导致语法错误或非预期结果。

正确的做法是使用逻辑运算符 &(按位与)来组合条件,并且必须用括号将每个条件表达式括起来,以确保正确的运算优先级。

二、正确地进行条件筛选

要从DataFrame中筛选出满足多个条件的数据行,应使用 & 运算符连接各个布尔条件,并用括号明确优先级。

# 正确的条件筛选
filtered_df = df[(df['parallax'] >= 300) & (df['parallax'] <= 900)]
print("筛选后的DataFrame (300 <= parallax <= 900):")
print(filtered_df)

解释:

  1. df['parallax'] >= 300 生成一个布尔 Series。
  2. df['parallax']
  3. (df['parallax'] >= 300) & (df['parallax']
  4. 最后,将这个新的布尔 Series 作为索引传递给 df,Pandas 会返回所有对应布尔值为 True 的行。

三、根据条件替换数值

如果目标不是筛选数据,而是替换DataFrame中不符合条件的数值(例如,替换为 NaN 或其他特定值),则需要不同的方法。

DreamGen
DreamGen

一个AI驱动的角色扮演和故事写作的平台

下载

1. 替换不符合条件的数值为 NaN

我们可以识别出所有不符合条件的行(即 parallax 小于 300 或大于 900 的行),然后将这些位置的数值替换为 np.nan。

# 复制原始DataFrame,避免修改原数据
df_replaced_nan = df.copy()

# 识别不符合条件的行:使用 | (按位或) 运算符
condition_to_replace = (df_replaced_nan['parallax'] < 300) | (df_replaced_nan['parallax'] > 900)

# 将不符合条件的数值替换为 NaN
df_replaced_nan.loc[condition_to_replace, 'parallax'] = np.nan
print("\n替换不符合条件数值为 NaN 的DataFrame:")
print(df_replaced_nan)

解释:

  1. df.copy() 创建一个副本,以防止对原始DataFrame造成意外修改。
  2. condition_to_replace 使用 | 运算符来组合条件,找出所有 parallax 值小于 300 或大于 900 的行。
  3. df_replaced_nan.loc[condition_to_replace, 'parallax'] = np.nan 精确地定位到这些不符合条件的行,并将其 parallax 列的值设置为 np.nan。

2. 使用 clip() 方法限定数值范围

如果需求是将超出指定范围的数值“裁剪”到边界值,Pandas 的 clip() 方法是最高效的解决方案。clip() 可以将 Series 或 DataFrame 中的值限制在一个给定的 lower 和 upper 边界之间。

# 复制原始DataFrame
df_clipped = df.copy()

# 使用 clip() 方法将 parallax 列的值限定在 [300, 900] 范围内
df_clipped['parallax'].clip(lower=300, upper=900, inplace=True)
print("\n使用 clip() 方法限定数值范围的DataFrame:")
print(df_clipped)

解释:

  1. df.copy() 同样是为了保护原始数据。
  2. df_clipped['parallax'].clip(lower=300, upper=900, inplace=True) 会遍历 parallax 列:
    • 如果值小于 300,则替换为 300。
    • 如果值大于 900,则替换为 900。
    • 如果值在 300 和 900 之间,则保持不变。
  3. inplace=True 参数表示直接修改原 Series,而不是返回一个新的 Series。

四、总结与注意事项

  • 运算符优先级: 在Pandas中组合多个条件时,务必使用括号 () 包裹每个独立的条件表达式,以确保 & (逻辑与) 和 | (逻辑或) 运算符的正确执行顺序。
  • 选择与替换:
    • 如果目的是获取满足条件的数据子集,请使用 df[条件] 或 df.loc[条件]。
    • 如果目的是修改原DataFrame中不符合条件的值,可以结合布尔索引和赋值操作,或使用 clip() 等专门方法。
  • df.copy() 的使用: 当你打算修改一个从现有DataFrame派生出的子集时,为了避免 SettingWithCopyWarning 和确保修改只作用于副本而不影响原始数据,强烈建议先使用 df.copy() 创建一个明确的副本。
  • loc 与 iloc: loc 主要用于基于标签的索引,而 iloc 用于基于整数位置的索引。在进行条件筛选和替换时,通常使用 loc 结合布尔 Series 来定位数据。

通过掌握上述方法,您可以更加灵活和准确地在Pandas DataFrame中进行条件筛选和数值替换,从而高效地完成数据清洗和预处理任务。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1435

2023.10.24

Go语言中的运算符有哪些
Go语言中的运算符有哪些

Go语言中的运算符有:1、加法运算符;2、减法运算符;3、乘法运算符;4、除法运算符;5、取余运算符;6、比较运算符;7、位运算符;8、按位与运算符;9、按位或运算符;10、按位异或运算符等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

225

2024.02.23

php三元运算符用法
php三元运算符用法

本专题整合了php三元运算符相关教程,阅读专题下面的文章了解更多详细内容。

85

2025.10.17

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

455

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

265

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

499

2024.03.13

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PostgreSQL 教程
PostgreSQL 教程

共48课时 | 6.4万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

Excel 教程
Excel 教程

共162课时 | 10.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号