0

0

基于DataFrame相对范围值进行Python聚合

碧海醫心

碧海醫心

发布时间:2025-10-11 12:10:29

|

850人浏览过

|

来源于php中文网

原创

基于dataframe相对范围值进行python聚合

本文介绍了如何使用 Pandas 在 DataFrame 中基于每个值的相对范围进行分组和聚合。我们将展示如何使用 groupby 和 transform 函数,结合 lambda 表达式,来实现根据指定范围内的值进行求和。通过这种方法,可以避免使用显式的 if-then 语句,从而提高代码的可读性和效率。

在数据分析中,经常需要根据数据的特定范围进行分组和聚合。例如,我们可能需要计算某个键对应的值在一定范围内的总和。Pandas 提供了强大的 groupby 和 transform 函数,可以帮助我们高效地完成这类任务。

使用 groupby 和 transform 进行聚合

下面的示例展示了如何使用 groupby 和 transform 函数,结合 lambda 表达式,来根据每个值的相对范围进行求和。

首先,创建一个示例 DataFrame:

立即学习Python免费学习笔记(深入)”;

Narration Box
Narration Box

Narration Box是一种语音生成服务,用户可以创建画外音、旁白、有声读物、音频页面、播客等

下载
import pandas as pd

df = pd.DataFrame({
    'key': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C'],
    'value': [.1, 0.244, 0.373, 0.514, 0.663, 0.786, 0.902, 1.01, 1.151, 1.295, 1.434, 1.541, 1.679, 1.793, 1.94, 2.049, 2.164, 2.284, 2.432, 2.533, 2.68, 2.786, 2.906, 3.008, 3.136],
    'desired_ouput': [1.231, 1.894, 2.68, 3.582, 3.482, 3.238, 2.865, 4.89, 6.431, 9.903, 11.843, 10.833, 11.731, 11.731, 9.002, 7.461, 11.462, 12.093, 17.785, 20.793, 21.765, 21.765, 19.481, 17.049, 14.516]
})

接下来,定义一个范围 N,并使用 groupby 和 transform 计算每个值在其 value +/- N 范围内的总和:

N = 0.5

df["desired_output_2"] = df.groupby("key")["value"].transform(
    lambda values: [
        values[(values > (v - N)) & (values < (v + N))].sum() for v in values
    ],
)

print(df)

这段代码首先按 key 列进行分组,然后使用 transform 函数对每个分组应用一个 lambda 表达式。这个 lambda 表达式遍历每个值 v,并计算所有落在 v - N 和 v + N 范围内的值的总和。

代码解析

  • df.groupby("key")["value"]: 这部分代码按照 key 列对 DataFrame 进行分组,并选择 value 列进行后续操作。
  • .transform(lambda values: ...): transform 函数将 lambda 表达式应用于每个分组。lambda 表达式接受一个 values 参数,表示当前分组的 value 列。
  • [values[(values > (v - N)) & (values

注意事项

  • 范围 N 的选择会直接影响聚合结果。请根据实际需求调整 N 的值。
  • 这种方法在处理大型数据集时可能会比较慢。如果性能是关键,可以考虑使用其他优化技术,例如使用 NumPy 向量化操作。
  • 确保你的数据类型正确。如果 value 列是字符串类型,需要先将其转换为数值类型,例如使用 df['value'] = pd.to_numeric(df['value'])。

总结

本文介绍了如何使用 Pandas 的 groupby 和 transform 函数,结合 lambda 表达式,来实现基于 DataFrame 值的相对范围进行聚合。这种方法简洁高效,可以避免使用显式的 if-then 语句,从而提高代码的可读性和可维护性。通过调整范围 N 的值,可以灵活地适应不同的聚合需求。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号