0

0

在Pandas中按组筛选最大/最小值:识别连续峰谷数据点

聖光之護

聖光之護

发布时间:2025-10-04 13:20:23

|

327人浏览过

|

来源于php中文网

原创

在pandas中按组筛选最大/最小值:识别连续峰谷数据点

本教程详细阐述了如何在Pandas DataFrame中,针对连续的特定标志(如HH或LL)分组,并从每个组中仅保留满足特定条件(如最高High值或最低Low值)的行,同时重置其他行的标志。文章通过groupby.transform结合布尔索引,提供了一种高效且专业的解决方案,避免了迭代和潜在的性能问题。

1. 问题背景与数据准备

在数据分析场景中,我们经常需要从时间序列或分组数据中识别出关键的“峰值”或“谷值”。例如,在一个交易数据集中,我们可能希望识别连续上涨(HH为True)或连续下跌(LL为True)区间内的最高点或最低点,并只保留这些关键点,而将同一区间内的其他点标记为非关键。

假设我们有一个Pandas DataFrame,其中包含HH和LL两个布尔列,分别表示“高高点”和“低低点”的趋势,以及对应的High和Low数值列。我们的目标是:

  • 对于连续的HH为True的行,只保留其中High值最高的行,将其余HH为True的行改为HH为False。
  • 对于连续的LL为True的行,只保留其中Low值最低的行,将其余LL为True的行改为LL为False。

以下是示例数据框的创建:

Haiper
Haiper

一个感知模型驱动的AI视频生成和重绘工具,提供文字转视频、图片动画化、视频重绘等功能

下载
import pandas as pd

mydict = [
        {'HH': True, 'LL': False, 'High': 10, 'Low': 1},
        {'HH': False, 'LL': True, 'High': 100, 'Low': 20},
        {'HH': True, 'LL': False, 'High': 32, 'Low': 1},
        {'HH': True, 'LL': False, 'High': 30, 'Low': 1},
        {'HH': True, 'LL': False, 'High': 31, 'Low': 1},
        {'HH': False, 'LL': True, 'High': 100, 'Low': 40},
        {'HH': False, 'LL': True, 'High': 100, 'Low': 45},
        {'HH': False, 'LL': True, 'High': 100, 'Low': 42},
        {'HH': False, 'LL': True, 'High': 100, 'Low': 44},
        {'HH': True, 'LL': False, 'High': 50, 'Low': 1},
        ]

df = pd.DataFrame(mydict)

print("原始DataFrame:")
print(df)

输出的原始DataFrame如下:

原始DataFrame:
      HH     LL  High  Low
0   True  False    10    1
1  False   True   100   20
2   True  False    32    1
3   True  False    30    1
4   True  False    31    1
5  False   True   100   40
6  False   True   100   45
7  False   True   100   42
8  False   True   100   44
9   True  False    50    1

2. 解决方案:使用groupby.transform进行高效分组与筛选

为了解决上述问题,我们需要一个能够识别连续HH或LL块的机制,并在这些块内部执行聚合操作。Pandas的groupby.transform方法是实现这一目标的强大工具

2.1 核心思路

  1. 创建分组标识: 首先,我们需要定义什么是“连续的HH或LL块”。当HH或LL列的模式发生变化时,就认为是一个新组的开始。
  2. 组内最大/最小值识别: 在每个识别出的组内,计算High列的最大值和Low列的最小值,并将其广播回原始DataFrame的每一行。
  3. 布尔索引筛选: 比较原始的High和Low值与广播回来的组内最大/最小值,生成布尔掩码。
  4. 更新DataFrame: 根据布尔掩码

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

454

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

264

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

499

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

71

2025.09.08

Python 数据分析与可视化
Python 数据分析与可视化

本专题聚焦 Python 在数据分析与可视化领域的核心应用,系统讲解数据清洗、数据统计、Pandas 数据操作、NumPy 数组处理、Matplotlib 与 Seaborn 可视化技巧等内容。通过实战案例(如销售数据分析、用户行为可视化、趋势图与热力图绘制),帮助学习者掌握 从原始数据到可视化报告的完整分析能力。

54

2025.10.14

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

1

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
React 教程
React 教程

共58课时 | 3.1万人学习

Pandas 教程
Pandas 教程

共15课时 | 0.9万人学习

ASP 教程
ASP 教程

共34课时 | 3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号