0

0

Pandas DataFrame条件赋值:列表推导与apply函数的进阶使用

心靈之曲

心靈之曲

发布时间:2025-08-17 12:50:22

|

446人浏览过

|

来源于php中文网

原创

Pandas DataFrame条件赋值:列表推导与apply函数的进阶使用

本文旨在解决在Pandas DataFrame中基于多列条件创建新列时的常见语法错误,并探讨处理复杂条件逻辑的最佳实践。我们将首先纠正列表推导中迭代多列的正确语法,即使用zip函数。随后,针对涉及多个elif类型复杂条件的场景,我们将详细介绍如何利用apply方法结合自定义函数,以提高代码的可读性和可维护性。

在数据处理中,根据现有列的值创建或修改新列是pandas dataframe的常见操作。当需要基于多列的组合条件来决定新列的值时,开发者可能会倾向于使用列表推导(list comprehension)。然而,在使用列表推导同时迭代多列时,常常会遇到语法错误。

1. 修正列表推导中多列迭代的语法

当尝试在列表推导中同时迭代DataFrame的多列时,直接将多个Series对象放置在for循环的in关键字之后是错误的语法。正确的做法是使用Python内置的zip函数,它能将多个可迭代对象打包成一个元组的迭代器,从而允许我们同时遍历这些对象。

错误示例回顾:

names_df['Surname'] = [
    'MISSING' if i != '' and j == '' else j
    for i, j in names_df['Name Entry 1'], names_df['Name Entry 2'] # 错误:不能直接用逗号分隔多个Series
]

上述代码的错误在于for i, j in names_df['Name Entry 1'], names_df['Name Entry 2']这一部分。Python的列表推导不支持直接通过逗号分隔多个Series来进行并行迭代。

正确使用zip函数:

zip函数可以将多个可迭代对象(如Pandas Series)的对应元素打包成一个个元组,然后返回一个由这些元组组成的迭代器。这样,在列表推导中就可以通过解包这些元组来同时获取多列的值。

import pandas as pd

# 示例数据
data = {'Name Entry 1': ['John', '', 'Jane', 'Mike'],
        'Name Entry 2': ['Doe', 'Smith', '', 'Johnson']}
names_df = pd.DataFrame(data)

# 使用zip函数修正列表推导
names_df['Surname'] = [
    'MISSING' if i != '' and j == '' else j
    for i, j in zip(names_df['Name Entry 1'], names_df['Name Entry 2'])
]

print("使用zip修正后的DataFrame:")
print(names_df)

输出:

使用zip修正后的DataFrame:
  Name Entry 1 Name Entry 2  Surname
0         John          Doe      Doe
1                     Smith    Smith
2         Jane        MISSING  MISSING
3         Mike      Johnson  Johnson

这种方法对于简单的条件判断非常简洁高效。然而,当条件逻辑变得复杂,涉及多个elif分支时,列表推导的可读性会迅速下降。

2. 利用apply()方法处理复杂条件逻辑

对于包含多个条件分支(类似if-elif-else结构)的场景,将逻辑封装在一个独立的函数中,并结合Pandas DataFrame的apply()方法是更推荐的做法。这种方法显著提升了代码的可读性、可维护性和扩展性。

有道智云AI开放平台
有道智云AI开放平台

有道智云AI开放平台

下载

实现步骤:

  1. 定义一个函数: 该函数将接收DataFrame的每一行作为输入(通常命名为row),并在函数内部通过row['ColumnName']的方式访问当前行的各个列的值。
  2. 在函数内部实现复杂的条件逻辑: 使用if-elif-else结构来判断并返回所需的值。
  3. 使用df.apply()方法: 将定义好的函数应用到DataFrame的每一行,并指定axis=1,表示按行进行操作。

示例代码:

import pandas as pd

# 示例数据
data = {'Name Entry 1': ['John', '', 'Jane', 'Mike', 'Emily'],
        'Name Entry 2': ['Doe', 'Smith', '', 'Johnson', '']}
names_df = pd.DataFrame(data)

def determine_surname(row):
    """
    根据'Name Entry 1'和'Name Entry 2'的值决定'Surname'。
    可以根据需要添加更多条件。
    """
    if row['Name Entry 1'] != '' and row['Name Entry 2'] == '':
        return 'MISSING'
    elif row['Name Entry 1'] == '' and row['Name Entry 2'] != '':
        return row['Name Entry 2'] # 例如:如果Entry 1为空但Entry 2不为空,则使用Entry 2
    # 添加更多elif条件...
    else:
        return row['Name Entry 2'] # 默认情况

names_df['Surname_Applied'] = names_df.apply(determine_surname, axis=1)

print("\n使用apply和自定义函数后的DataFrame:")
print(names_df)

输出:

使用apply和自定义函数后的DataFrame:
  Name Entry 1 Name Entry 2 Surname_Applied
0         John          Doe             Doe
1                     Smith           Smith
2         Jane        MISSING         MISSING
3         Mike      Johnson         Johnson
4        Emily        MISSING         MISSING

apply()方法的优势:

  • 可读性: 将复杂的逻辑封装在命名清晰的函数中,使代码意图一目了然。
  • 可维护性: 当需要修改或添加新的条件时,只需修改函数内部逻辑,而不必改动整个列表推导或多次嵌套的条件表达式。
  • 模块化: 可以将常用的逻辑函数定义为独立的工具函数,方便在不同场景下复用。
  • 灵活性: 函数内部可以执行更复杂的操作,例如调用其他函数、进行数据类型转换等,而不仅仅是简单的条件判断。

总结与最佳实践

在Pandas中基于多列条件创建新列时,选择合适的方法至关重要:

  • 对于简单、单一的条件判断: 修正后的列表推导(结合zip函数)提供了一种简洁高效的解决方案。
  • 对于复杂、多分支的条件逻辑: 强烈推荐使用df.apply()方法结合自定义函数。这种方法牺牲了一点点性能(相对于向量化操作),但极大地提高了代码的可读性、可维护性和扩展性,尤其是在实际项目中,代码的清晰度往往比极致的性能更为重要。

在处理大型数据集时,如果性能是首要考虑因素,并且条件逻辑可以通过数值操作或简单的布尔条件组合表达,可以考虑使用Pandas的向量化操作,如np.where或np.select(需要导入NumPy),它们通常比apply更快。然而,对于涉及字符串操作或复杂业务逻辑的场景,apply结合自定义函数仍然是兼顾效率与可读性的优秀选择。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号