0

0

Polars DataFrame高效列式除法实践:利用单行数据进行优化

DDD

DDD

发布时间:2025-07-17 21:26:02

|

455人浏览过

|

来源于php中文网

原创

polars dataframe高效列式除法实践:利用单行数据进行优化

本教程旨在探讨如何在Polars中高效地使用单行DataFrame对另一个DataFrame进行列式除法操作。文章将首先指出通过重复构建大型DataFrame进行除法的低效性,随后详细介绍并演示使用with_columns结合字典推导式和列表达式的优化方案,该方案能显著提升性能和内存效率,是处理此类数据转换任务的最佳实践。

Polars中DataFrame列式除法概述

在数据处理中,我们经常需要对DataFrame的每一列或每一行应用特定的操作。当需要将一个DataFrame的行(或列)除以一组特定的数值时,如果这些数值来源于一个单行(或单列)的DataFrame,如何高效地实现这一操作就成为了一个常见问题。特别是在处理大型数据集时,性能和内存效率是至关重要的考量因素。

低效的实现方式:重复与拼接

在Polars中,如果直接尝试将一个DataFrame与一个单行DataFrame进行除法运算,Polars的广播机制默认不会直接将单行DataFrame的每列值广播到目标DataFrame的对应整列。一种直观但效率低下的方法是手动将单行DataFrame重复多次,使其行数与目标DataFrame相同,然后再进行元素级的除法。

考虑以下场景:我们有一个包含多行数据的DataFrame df,以及一个包含除数信息的单行DataFrame divisors。

import polars as pl
from itertools import repeat

# 示例数据
data = {'a': [i for i in range(1, 5)],
        'b': [i for i in range(1, 5)],
        'c': [i for i in range(1, 5)],
        'd': [i for i in range(1, 5)]}
df = pl.DataFrame(data)

# 单行除数DataFrame
divisors = pl.DataFrame({'d1': 1, 'd2': 10, 'd3': 100, 'd4': 1000})

print("原始DataFrame (df):")
print(df)
print("\n除数DataFrame (divisors):")
print(divisors)

输出:

Batch GPT
Batch GPT

使用AI批量处理数据、自动执行任务

下载
原始DataFrame (df):
shape: (4, 4)
┌─────┬─────┬─────┬─────┐
│ a   ┆ b   ┆ c   ┆ d   │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ 1   ┆ 1   ┆ 1   ┆ 1   │
│ 2   ┆ 2   ┆ 2   ┆ 2   │
│ 3   ┆ 3   ┆ 3   ┆ 3   │
│ 4   ┆ 4   ┆ 4   ┆ 4   │
└─────┴─────┴─────┴─────┘

除数DataFrame (divisors):
shape: (1, 4)
┌─────┬─────┬─────┬──────┐
│ d1  ┆ d2  ┆ d3  ┆ d4   │
│ --- ┆ --- ┆ --- ┆ ---  │
│ i64 ┆ i64 ┆ i64 ┆ i64  │
╞═════╪═════╪═════╪══════╡
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
└─────┴─────┴─────┴──────┘

为了使 divisors DataFrame的行数与 df 匹配,我们可以手动复制 divisors 并进行拼接:

# 低效方法:重复并拼接除数DataFrame
divisors_as_big_as_df = pl.concat([item for item in repeat(divisors, len(df))])
divided_df_inefficient = df / divisors_as_big_as_df

print("\n重复后的除数DataFrame (divisors_as_big_as_df):")
print(divisors_as_big_as_df)
print("\n低效方法得到的除法结果 (divided_df_inefficient):")
print(divided_df_inefficient)

输出:

重复后的除数DataFrame (divisors_as_big_as_df):
shape: (4, 4)
┌─────┬─────┬─────┬──────┐
│ d1  ┆ d2  ┆ d3  ┆ d4   │
│ --- ┆ --- ┆ --- ┆ ---  │
│ i64 ┆ i64 ┆ i64 ┆ i64  │
╞═════╪═════╪═════╪══════╡
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
└─────┴─────┴──────┴──────┘

低效方法得到的除法结果 (divided_df_inefficient):
shape: (4, 4)
┌─────┬─────┬──────┬───────┐
│ a   ┆ b   ┆ c    ┆ d     │
│ --- ┆ --- ┆ ---  ┆ ---   │
│ f64 ┆ f64 ┆ f64  ┆ f64   │
╞═════╪═════╪══════╪═══════╡
│ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │
│ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │
│ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │
│ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │
└─────┴─────┴──────┴───────┘

这种方法虽然能得到正确的结果,但其缺点显而易见:当 df 包含大量行时,divisors_as_big_as_df 会占用大量的内存,并且 pl.concat 操作本身也可能非常耗时,严重影响性能。

高效的解决方案:利用with_columns进行列式操作

Polars提供了更高效的机制来处理这类问题,即通过with_columns结合列表达式。我们可以遍历目标DataFrame的每一列,然后将该列与divisors DataFrame中对应列的单个值进行除法运算。Polars的表达式引擎能够智能地将这个单值广播到整列。

# 高效方法:使用with_columns进行列式除法
divided_df_efficient = df.with_columns(
    # 使用字典推导式为每一列生成新的表达式
    **{col: pl.col(col) / divisors[f"d{i+1}"]
       for (i, col) in enumerate(df.columns)}
)

print("\n高效方法得到的除法结果 (divided_df_efficient):")
print(divided_df_efficient)

输出:

高效方法得到的除法结果 (divided_df_efficient):
shape: (4, 4)
┌─────┬─────┬──────┬───────┐
│ a   ┆ b   ┆ c    ┆ d     │
│ --- ┆ --- ┆ ---  ┆ ---   │
│ f64 ┆ f64 ┆ f64  ┆ f64   │
╞═════╪═════╪══════╪═══════╡
│ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │
│ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │
│ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │
│ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │
└─────┴─────┴──────┴───────┘

代码解析与优势

  1. df.with_columns(...): 这是Polars中用于添加或修改DataFrame列的核心方法。它接受一系列表达式作为参数,每个表达式定义了新列的计算逻辑。
  2. 字典推导式 {col: expression for ...}: 我们使用字典推导式来动态地为 df 中的每一列生成一个修改表达式。字典的键是原始列的名称 (col),值是对应列的计算表达式。** 操作符用于将字典解包为关键字参数传递给 with_columns。
  3. pl.col(col): 这代表了当前正在处理的 df 中的那一列。
  4. divisors[f"d{i+1}"]: 这是实现高效广播的关键。
    • enumerate(df.columns) 遍历 df 的列名及其索引。
    • f"d{i+1}" 根据索引动态构建 divisors DataFrame中的列名(例如,当 i 为0时,对应 d1;当 i 为1时,对应 d2,以此类推)。
    • divisors[...] 表达式会从 divisors DataFrame中提取指定列的数据。由于 divisors 是一个单行DataFrame,divisors[f"d{i+1}"] 实际上会返回一个包含单个值的Polars Series(或在表达式上下文中是一个表示该单值的表达式)。
    • 当一个 pl.col() 表达式与一个包含单个值的Series(或对应的表达式)进行算术运算时,Polars的查询优化器会智能地将这个单值广播到 pl.col() 所代表的整个列上,而无需在内存中实际复制该值。这极大地减少了内存消耗和计算开销。

这种方法的优势包括:

  • 高性能: 避免了显式地创建和操作大型中间DataFrame,Polars的内部优化器能够高效地执行列式操作。
  • 内存效率: 无需为除数创建与目标DataFrame相同大小的副本,显著减少了内存占用
  • 代码简洁: 使用字典推导式使得代码更加紧凑和易读。

注意事项

  • 列名匹配: 上述解决方案假设 divisors DataFrame的列名(如 d1, d2)与 df 的列顺序相对应。如果列名不匹配或对应关系更复杂,您可能需要调整 f"d{i+1}" 的逻辑,或者使用一个映射字典来明确指定 df 列与 divisors 列的对应关系。
  • 数据类型: 除法运算通常会导致整数类型转换为浮点数类型,以保留小数部分。Polars会自动处理这种类型提升。
  • 零除错误: 如果 divisors 中包含零值,将导致除以零的错误。在实际应用中,需要考虑如何处理这种情况,例如使用 pl.Expr.fill_nan() 或 pl.Expr.replace() 进行错误处理。

总结

在Polars中对DataFrame进行列式除法,尤其是当除数来源于一个单行DataFrame时,最推荐的方法是利用 with_columns 结合字典推导式和Polars的表达式系统。这种方法不仅能够提供卓越的性能和内存效率,还能使代码更加清晰和易于维护。通过避免不必要的DataFrame复制和拼接操作,我们可以充分发挥Polars在处理大规模数据时的强大能力。

相关专题

更多
数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

298

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

216

2025.10.31

C++类型转换方式
C++类型转换方式

本专题整合了C++类型转换相关内容,想了解更多相关内容,请阅读专题下面的文章。

290

2025.07.15

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

41

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

3

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Git 教程
Git 教程

共21课时 | 2.3万人学习

麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号