0

0

PyTorch 中的 CocoCaptions (1)

碧海醫心

碧海醫心

发布时间:2025-01-09 09:19:33

|

503人浏览过

|

来源于dev.to

转载

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
  • 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
  • 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
  • 我的帖子解释了 ms coco。

cococaptions() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:

*备忘录:

  • 第一个参数是root(必需类型:str或pathlib.path): *备注:
    • 这是图像的路径。
    • 绝对或相对路径都是可能的。
  • 第二个参数是 annfile(必需类型:str 或 pathlib.path): *备注:
    • 这是注释的路径。
    • 绝对或相对路径都是可能的。
  • 第三个参数是transform(optional-default:none-type:callable)。
  • 第四个参数是 target_transform(optional-default:none-type:callable)。
  • 第五个参数是transforms(optional-default:none-type:callable)。
from torchvision.datasets import CocoCaptions

cap_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/captions_train2014.json"
)

cap_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/captions_train2014.json",
    transform=None,
    target_transform=None,
    transforms=None
)

ins_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/instances_train2014.json"
)

pk_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json"
)

len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data)
# (82783, 82783, 82783)

cap_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/captions_val2014.json"
)

ins_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/instances_val2014.json"
)

pk_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json"
)

len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data)
# (40504, 40504, 40504)

test2014_data = CocoCaptions(
    root="data/coco/imgs/test2014",
    annFile="data/coco/anns/test2014/image_info_test2014.json"
)

test2015_data = CocoCaptions(
    root="data/coco/imgs/test2015",
    annFile="data/coco/anns/test2015/image_info_test2015.json"
)

testdev2015_data = CocoCaptions(
    root="data/coco/imgs/test2015",
    annFile="data/coco/anns/test2015/image_info_test-dev2015.json"
)

len(test2014_data), len(test2015_data), len(testdev2015_data)
# (40775, 81434, 20288)

cap_train2014_data
# Dataset CocoCaptions
#     Number of datapoints: 82783
#     Root location: data/coco/imgs/train2014

cap_train2014_data.root
# 'data/coco/imgs/train2014'

print(cap_train2014_data.transform)
# None

print(cap_train2014_data.target_transform)
# None

print(cap_train2014_data.transforms)
# None

cap_train2014_data.coco
# 

cap_train2014_data[26]
# (,
#  ['three zeebras standing in a grassy field walking',
#   'Three zebras are standing in an open field.',
#   'Three zebra are walking through the grass of a field.',
#   'Three zebras standing on a grassy dirt field.',
#   'Three zebras grazing in green grass field area.'])

cap_train2014_data[179]
# (,
#  ['a young guy walking in a forrest holding an object in his hand',
#   'A partially black and white photo of a man throwing ... the woods.',
#   'A disc golfer releases a throw from a dirt tee ... wooded course.',
#   'The person is in the clearing of a wooded area. ',
#   'a person throwing a frisbee at many trees '])

cap_train2014_data[194]
# (,
#  ['A person on a court with a tennis racket.',
#   'A man that is holding a racquet standing in the grass.',
#   'A tennis player hits the ball during a match.',
#   'The tennis player is poised to serve a ball.',
#   'Man in white playing tennis on a court.'])

ins_train2014_data[26] # Error

ins_train2014_data[179] # Error

ins_train2014_data[194] # Error

pk_train2014_data[26]
# (, [])

pk_train2014_data[179] # Error

pk_train2014_data[194] # Error

cap_val2014_data[26]
# (,
#  ['a close up of a child next to a cake with balloons',
#   'A baby sitting in front of a cake wearing a tie.',
#   'The young boy is dressed in a tie that matches his cake. ',
#   'A child eating a birthday cake near some balloons.',
#   'A baby eating a cake with a tie around ... the background.'])

cap_val2014_data[179]
# (,
#  ['Many small children are posing together in the ... white photo. ',
#   'A vintage school picture of grade school aged children.',
#   'A black and white photo of a group of kids.',
#   'A group of children standing next to each other.',
#   'A group of children standing and sitting beside each other. '])

cap_val2014_data[194]
# (,
#  ['A man hitting a tennis ball with a racquet.',
#   'champion tennis player swats at the ball hoping to win',
#   'A man is hitting his tennis ball with a recket on the court.',
#   'a tennis player on a court with a racket',
#   'A professional tennis player hits a ball as fans watch.'])

ins_val2014_data[26] # Error

ins_val2014_data[179] # Error

ins_val2014_data[194] # Error

pk_val2014_data[26] # Error

pk_val2014_data[179] # Error

pk_val2014_data[194] # Error

test2014_data[26]
# (, [])

test2014_data[179]
# (, [])

test2014_data[194]
# (, [])

test2015_data[26]
# (, [])

test2015_data[179]
# (, [])

test2015_data[194]
# (, [])

testdev2015_data[26]
# (, [])

testdev2015_data[179]
# (, [])

testdev2015_data[194]
# (, [])

import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Rectangle
import numpy as np
from pycocotools import mask

def show_images(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    x_crd = 0.02
    for i, axis in zip(ims, axes.ravel()):
        if data[i][1]:
            im, anns = data[i]
            axis.imshow(X=im)
            y_crd = 0.0
            for j, ann in enumerate(iterable=anns):
                text_list = ann.split()
                if len(text_list) > 9:
                    text = " ".join(text_list[0:10]) + " ..."
                else:
                    text = " ".join(text_list)
                plt.figtext(x=x_crd, y=y_crd, fontsize=10,
                            s=f'{j} : {text}')
                y_crd -= 0.06
            x_crd += 0.325
            if i == 2 and file == "val2017":
                x_crd += 0.06
        elif not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (26, 179, 194)

show_images(data=cap_train2014_data, ims=ims,
             main_title="cap_train2014_data")
show_images(data=cap_val2014_data, ims=ims, 
             main_title="cap_val2014_data")
show_images(data=test2014_data, ims=ims,
             main_title="test2014_data")
show_images(data=test2015_data, ims=ims,
             main_title="test2015_data")
show_images(data=testdev2015_data, ims=ims,
             main_title="testdev2015_data")

image description

image description

NT80 购物系统
NT80 购物系统

功能说明:1 会员可申请开店功能2 购买在线扣除金额3 冲值卡自动生成4 支持2级分类5 数据库压缩和备份6 会员分5个级别7 商品带讨论8 自带融合论坛,可关闭打开9 密码找回功能10 新闻``滚动新闻``帮助中心11 后台设置前台会员的上传权限12 可关闭/打开商店13 会员自助发布商品功能14 用户问题咨询管理

下载

image description

image description

image description

相关专题

更多
json数据格式
json数据格式

JSON是一种轻量级的数据交换格式。本专题为大家带来json数据格式相关文章,帮助大家解决问题。

403

2023.08.07

json是什么
json是什么

JSON是一种轻量级的数据交换格式,具有简洁、易读、跨平台和语言的特点,JSON数据是通过键值对的方式进行组织,其中键是字符串,值可以是字符串、数值、布尔值、数组、对象或者null,在Web开发、数据交换和配置文件等方面得到广泛应用。本专题为大家提供json相关的文章、下载、课程内容,供大家免费下载体验。

528

2023.08.23

jquery怎么操作json
jquery怎么操作json

操作的方法有:1、“$.parseJSON(jsonString)”2、“$.getJSON(url, data, success)”;3、“$.each(obj, callback)”;4、“$.ajax()”。更多jquery怎么操作json的详细内容,可以访问本专题下面的文章。

306

2023.10.13

go语言处理json数据方法
go语言处理json数据方法

本专题整合了go语言中处理json数据方法,阅读专题下面的文章了解更多详细内容。

74

2025.09.10

default gateway怎么配置
default gateway怎么配置

配置default gateway的步骤:1、了解网络环境;2、获取路由器IP地址;3、登录路由器管理界面;4、找到并配置WAN口设置;5、配置默认网关;6、保存设置并退出;7、检查网络连接是否正常。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

219

2023.12.07

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

428

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

7

2025.12.22

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

1

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号