0

0

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

王林

王林

发布时间:2024-03-27 20:46:33

|

819人浏览过

|

来源于51CTO.COM

转载

在计算机科学领域,图形结构由节点(代表实体)和边(表示实体之间的关系)构成。

图无处不在。

互联网可以被视为一个庞大的网络,搜索引擎利用图形化的方式来组织和展示信息。

LLMs主要在常规文本上训练,因此将图转化为LLMs可理解的文本是一项具有挑战性的任务,因为图结构与文本有着根本的不同。

在ICLR 2024上,一支来自谷歌的团队探索了如何将图形数据转换为适合LLMs理解的形式。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

论文地址:https://openreview.net/pdf?id=iuxr1ccrsi

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

使用两种不同的方法将图形编码为文本,并将文本和问题反馈给LLM的过程

他们还开发了一个名为GraphQA的基准,用于探究解决不同图推理问题的方法,并展示了如何以一种有利于LLM解决图形相关问题的方式来表达这些问题。

使用正确的方法,使得LLMs在图形任务上最高得以提升60%的性能。

GraphOA:一场对LLMs的「考试」

首先,谷歌团队设计了GraphQA基准测试,它可以被看作是一门考试,旨在评估LLM针对特定于图形问题的能力。

GraphOA通过使用多种类型的图表,确保广度和连接数量的多样性,以寻找LLMs在处理图形时可能存在的偏差情况,并使整个过程更接近LLMs在实际应用中可能遇到的情况。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

使用GraphIQA对LLMs进行推理的框架

虽然任务很简单,比如检查边是否存在、计算节点或者边的数量等等,但这些任务都需要LLMs理解节点和边之间的关系,对于更复杂的图形推理至关重要。

同时,团队还探索了如何将图转换为LLMs可以处理的文本,比如解决了如下两个关键问题:

节点编码:我们如何表示单个节点?节点可以包括简单整数、常用名称(人名、字符)和字母。

边缘编码:我们如何描述节点之间的关系?方法可以包括括号符号、短语(如「是朋友」)和符号表示(如箭头)。

最终,研究人员通过系统地结合各种节点和边的编码方式,产生了像下图中展示的那些函数。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

图形编码函数的例子

LLMs表现怎么样呢?

研究团队在GraphOA上进行了三个关键实验:

  1. 测试LLMs处理图形任务的能力
  2. 测试LLMs的大小对性能的影响
  3. 测试不同图形形状对性能的影响

在第一个实验中,LLMs表现平平,在大多数基本任务上,LLMs的表现并不比随机猜测好多少。

但编码方式显著影响结果,如下图所示,在大多数情况下,「incident」编码在大多数任务中表现出色。选择合适的编码函数可以极大的提高任务的准确度。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

基于不同任务准确度的各种图编码器函数的比较

在第二个测试中,研究人员在不同大小的模型上测试了相同的图形任务。

就结论而言,在图形推理任务中,规模更大的模型表现更好,

然而有趣的是,在「边存在性」任务(确定图中两个节点是否相连)中,规模并不像其他任务那么重要。

即使是最大的LLM在循环检查问题上(确定图中是否存在循环)也无法始终击败简单的基线解决方案。这表明LLMs在某些图任务上仍有改进的空间。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

模型容量对PaLM 2-XXS、XS、S和L的图推理任务的影响

在第三个测试中,对于图形结构是否会影响LMMs解决问题的能力,研究人员通过GraphOA生成不同结构的图形进行分析。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

GraphQA不同图形生成器生成的图形示例。ER、BA、SBM和SFN分别是Erdős-Rényi、Barabási-Albert、随机块模型和无标度网络。

结果得出,图的结构对LLMs的性能有很大影响。

例如,在一个询问循环是否存在的任务中,LLMs在紧密相连的图形中表现出色(这里循环很常见),但在路径图中表现不佳(循环从不发生)。

但同时提供一些混合样本有助于LLMs适应,比如在循环检测任务中,研究人员在提示中添加了一些包含循环和一些不包含循环的示例作为少样本学习的例子,通过这种方式提高了LLMs的性能。

LLM性能最高60%提升!谷歌ICLR 2024力作:让大语言模型学会「图的语言」

在不同的图任务上比较不同的图生成器。主要观察结果是,图结构对LLM的性能有显著影响。ER、BA、SBM和SFN分别指的是Erdős-Rényi、Barabási-Albert、随机块模型和无标度网络。

AILOGO
AILOGO

LOGO123旗下的AI智能LOGO生成器,只需输入品牌名称就能免费在线生成公司logo设计及配套企业VI,轻松打造您的个性品牌!

下载

这仅仅是让LLMs理解图的开始

在论文中,谷歌团队初步探索了如何将图形最佳地表示为文本,以便LLMs能理解他们。

在正确编码技术的帮助下,显著提高了LLMs在图形问题上的准确性(从大约5%到超过60%的改进)。

同时也确定了三个主要的影响因子,分别为图形转换为文本的编码方式、不同图形的任务类型、以及图形的疏密结构。

这仅仅是让LLMs理解图的开始。在新基准测试GraphQA的帮助下,期待进一步研究,探索LLMs的更多可能性。

相关文章

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1506

2024.08.16

什么是搜索引擎
什么是搜索引擎

搜索引擎是一种互联网工具,用于帮助用户在网上查找信息。搜索引擎的目标是提供最准确、最有价值的搜索结果,使用户能够快速找到所需的信息。本专题为大家提供搜索引擎相关的各种文章、以及下载和课程。

317

2023.08.02

有哪些目录搜索引擎
有哪些目录搜索引擎

目录搜索引擎有Google、Bing、Yahoo、Baidu、DuckDuckGo等。想了解更多目录搜索引擎的相关内容,可以阅读本专题下面的文章。

817

2023.11.06

搜索引擎营销的主要模式
搜索引擎营销的主要模式

搜索引擎营销的主要模式包括:1. 竞价排名(ppc);2. 搜索引擎优化(seo);3. 本地搜索营销;4. 购物广告;5. 视频广告;6. 展示广告;7. 社交媒体营销;8. 移动广告。想了解更多搜索引擎营销的相关内容,可以阅读本专题下面的文章。

408

2024.05.20

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

0

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1

2025.12.24

Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

2

2025.12.24

任务管理器教程
任务管理器教程

本专题整合了任务管理器相关教程,阅读下面的文章了解更多详细操作。

2

2025.12.24

AppleID格式
AppleID格式

本专题整合了AppleID相关内容,阅读专题下面的文章了解更多详细教程。

2

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 2.4万人学习

Go 教程
Go 教程

共32课时 | 2.9万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 1.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号