0

0

KNN算法分类的基本原理和实例

王林

王林

发布时间:2024-01-23 11:24:20

|

2223人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

knn算法分类原理和步骤(knn算法分类实例)

KNN算法是一种简单易用的分类算法,适用于小规模数据集和低维特征空间。它在图像分类、文本分类等领域中表现出色,因其实现简单、易于理解而备受青睐。

西安龙昌光学元件企业网站1.1
西安龙昌光学元件企业网站1.1

在原有基础上进行了较大改动进行了代码重写,页面结构和数据库结构均作了优化,基本功能: 1. 精美flash导入页面; 2. 产品发布,支持一级分类; 3. 公司简介、售后服务、联系我们,可进行后台管理; 4. 也可以照“公司简介”的方法增加其他内容,如企业文化、企业荣誉... 5. 采用eWebEditor是网站后台具有强大的编辑功能; 初始帐号: admin 初始密码: admin888

下载

KNN算法的基本思想是通过比较待分类样本的特征与训练样本的特征,找到最接近的K个邻居,并根据这K个邻居的类别确定待分类样本的类别。KNN算法中使用已标记好类别的训练集和待分类的测试集。KNN算法的分类过程包括以下几个步骤:首先,计算待分类样本与所有训练样本之间的距离;其次,选择距离最近的K个邻居;然后,根据K个邻居的类别进行投票,得出待分类样本的类别;最后,将待分类样本的类别确定为投票结果中得票最多的类别。通过这些步骤,KNN算法可以对待分类样本进行准确的分类。

1.计算距离

对于未分类的测试样本,需计算其与训练集所有样本的距离,常用欧式、曼哈顿等方法。

2.选择K个邻居

根据计算出来的距离,选择与待分类样本距离最近的K个训练集样本。这些样本就是待分类样本的K个邻居。

3.确定类别

根据K个邻居的类别来确定待分类样本的类别。通常采用“多数表决法”来确定待分类样本的类别,即选择K个邻居中出现最多的类别作为待分类样本的类别。

KNN算法相对简单,但也有一些需要注意的问题。首先,K值的选择对算法的性能有很大的影响,通常需要通过交叉验证等方法来确定最优的K值。其次,KNN算法对数据集的规模和维度敏感,对于大规模和高维数据集的处理会出现效率问题。此外,KNN算法还存在“类别不平衡”的问题,即某些类别的样本数量较少,可能导致算法对这些类别的分类效果较差。

以下是一个使用Python实现KNN算法的分类实例,代码如下:

import numpy as np
from collections import Counter

class KNN:
    def __init__(self, k):
        self.k = k

    def fit(self, X, y):
        self.X_train = X
        self.y_train = y

    def predict(self, X_test):
        predictions = []

        for x_test in X_test:
            distances = []
            for x_train in self.X_train:
                distance = np.sqrt(np.sum((x_test - x_train)**2))
                distances.append(distance)
            idx = np.argsort(distances)[:self.k]
            k_nearest_labels = [self.y_train[i] for i in idx]
            most_common = Counter(k_nearest_labels).most_common(1)
            predictions.append(most_common[0][0])

        return np.array(predictions)

这个KNN类的构造函数中传入参数k表示选择多少个邻居来进行分类。fit方法用于训练模型,接受一个训练集X和它们对应的标签y。predict方法用于对测试集进行分类,接受一个测试集X_test,返回预测的标签。

在predict方法中,对于每个测试样本,首先计算它与训练集中所有样本的距离,并选择距离最近的k个样本。然后,统计这k个样本中出现最频繁的标签,并作为测试样本的分类标签。

下面是一个使用这个KNN类进行分类的例子,数据集为一个二维平面上的点集,其中红色点表示类别1,蓝色点表示类别2:

import matplotlib.pyplot as plt

# 生成数据集
X = np.random.rand(200, 2) * 5 - 2.5
y = np.zeros(200)
y[np.sum(X**2, axis=1) > 2] = 1

# 分割训练集和测试集
train_idx = np.random.choice(200, 150, replace=False)
test_idx = np.array(list(set(range(200)) - set(train_idx)))
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]

# 训练模型并进行预测
knn = KNN(k=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

# 计算准确率并绘制分类结果
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)

plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()

运行这段代码后,可以看到分类结果图像。其中,颜色表示预测的类别,红色表示类别1,蓝色表示类别2。根据分类结果,可以计算出模型的准确率。

这个实例展示了KNN算法在二维平面上的应用,通过计算距离来确定邻居,并根据邻居的类别来进行分类。在实际应用中,KNN算法可以用于图像分类、文本分类等领域,是一种简单而有效的分类算法。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

574

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

697

2023.08.11

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 4.9万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号