0

0

图像压缩的实现过程:变分自编码器

王林

王林

发布时间:2024-01-23 11:24:15

|

1880人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

用于图像压缩的变分自编码器(附实现过程)

变分自编码器(Variational Autoencoder,VAE)是一种无监督学习的神经网络,用于图像压缩和生成。相比传统自编码器,VAE可以重建输入图像,还能生成与之类似的新图像。其核心思想是将输入图像编码为潜在变量的分布,并从中进行采样以生成新的图像。VAE的独特之处在于使用变分推断来训练模型,通过最大化观测数据与生成数据之间的下界来实现参数学习。这种方法使得VAE能够学习到数据的潜在结构和生成新样本的能力。VAE已经在许多领域取得了显著的成功,包括图像生成、属性编辑和图像重建等任务。

VAE(变分自编码器)的结构与自编码器类似,由编码器和解码器两部分组成。编码器将输入图像压缩成潜在变量的分布,包括均值向量和方差向量。解码器从潜在变量中采样生成新的图像。为了使潜在变量的分布更合理,VAE引入了KL散度的正则化项,使潜在变量的分布更接近标准正态分布。这样做可以提高模型的表达能力和生成能力。

下面以MNIST手写数字数据集为例,介绍VAE的实现过程。

首先,我们需要导入必要的库和数据集。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# 加载数据集
transform = transforms.Compose([
    transforms.ToTensor(),
])
train_dataset = datasets.MNIST(root='./data/', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)

接下来,定义编码器和解码器的网络结构。

Copilot
Copilot

Copilot是由微软公司开发的一款AI生产力工具,旨在通过先进的人工智能技术,帮助用户快速完成各种任务,提升工作效率。

下载
# 定义编码器
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
        self.fc1 = nn.Linear(128 * 7 * 7, 256)
        self.fc21 = nn.Linear(256, 20) # 均值向量
        self.fc22 = nn.Linear(256, 20) # 方差向量

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.relu(self.conv3(x))
        x = x.view(-1, 128 * 7 * 7)
        x = nn.functional.relu(self.fc1(x))
        mean = self.fc21(x)
        log_var = self.fc22(x)
        return mean, log_var


# 定义解码器
class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.fc1 = nn.Linear(20, 256)
        self.fc2 = nn.Linear(256, 128 * 7 * 7)
        self.conv1 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
        self.conv2 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
        self.conv3 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = x.view(-1, 128, 7, 7)
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.sigmoid(self.conv3(x))
        return x


# 定义VAE模型
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()

    def reparameterize(self, mean, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mean

    def forward(self, x):
        mean, log_var = self.encoder(x)

接下来是VAE模型的前向传播过程,其中包括从潜在变量中采样生成新的图像,以及计算重构误差和KL散度的正则化项。

z = self.reparameterize(mean, log_var)
x_recon = self.decoder(z)
return x_recon, mean, log_var

def loss_function(self, x_recon, x, mean, log_var):
    recon_loss = nn.functional.binary_cross_entropy(x_recon, x, size_average=False)
    kl_loss = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp())
    return recon_loss + kl_loss

def sample(self, num_samples):
    z = torch.randn(num_samples, 20)
    samples = self.decoder(z)
    return samples

最后,我们定义优化器,并开始训练模型。

# 定义优化器
vae = VAE()
optimizer = optim.Adam(vae.parameters(), lr=1e-3)

# 开始训练模型
num_epochs = 10
for epoch in range(num_epochs):
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
optimizer.zero_grad()
x_recon, mean, log_var = vae(data)
loss = vae.loss_function(x_recon, data, mean, log_var)
loss.backward()
optimizer.step()

    if batch_idx % 100 == 0:
        print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(
            epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.data.item()))

在训练完成后,我们可以使用VAE生成新的手写数字图像。

# 生成手写数字图像
samples = vae.sample(10)
fig, ax = plt.subplots(1, 10, figsize=(10, 1))
for i in range(10):
ax[i].imshow(samples[i].detach().numpy().reshape(28, 28), cmap='gray')
ax[i].axis('off')
plt.show()

VAE是一种强大的图像压缩和生成模型,其通过将输入图像编码为潜在变量的分布来实现图像压缩,同时从中采样生成新的图像。与传统的自编码器不同,VAE还引入了KL散度的正则化项,使得潜在变量的分布更加合理。在实现VAE时,需要定义编码器和解码器的网络结构,并计算重构误差和KL散度的正则化项。通过训练VAE模型,可以学习到输入图像的潜在变量分布,并从中生成新的图像。

以上是VAE的基本介绍和实现过程,希望能对读者有所帮助。

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 7.6万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Rust 教程
Rust 教程

共28课时 | 3.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号