0

0

比较自底向上算法和自顶向下算法的传递闭包算法

王林

王林

发布时间:2024-01-13 15:12:07

|

1311人浏览过

|

来源于php中文网

原创

传递闭包算法对比:自底向上算法vs自顶向下算法

传递闭包算法对比:自底向上算法 vs 自顶向下算法

引言:
传递闭包算法是图论中的一种常用算法,能够在有向图或无向图中寻找图的传递闭包。在这篇文章中,我们将对传递闭包算法的两种常用实现方式进行对比:自底向上算法和自顶向下算法,并给出具体的代码示例。

一、自底向上算法:
自底向上算法是传递闭包算法的一种实现方式,通过计算图中所有可能的路径,构建出图的传递闭包。其算法步骤如下:

  1. 初始化传递闭包矩阵TransitiveClosure,将其设置为图的邻接矩阵。
  2. 对于每一个顶点v,将TransitiveClosurev设置为1,表示顶点本身是可达的。
  3. 对于每一对顶点(u,v),如果存在一条从u到v的边,则将TransitiveClosureu设置为1。
  4. 对于每一对顶点(u,v),以及所有其他顶点w,如果TransitiveClosureu和TransitiveClosurew均为1,则将TransitiveClosureu设置为1。
  5. 循环迭代第4步,直到传递闭包矩阵不再发生变化为止。

下面是自底向上算法的具体代码示例,以邻接矩阵Graph和传递闭包矩阵TransitiveClosure为输入:

def transitive_closure(Graph, TransitiveClosure):
    num_vertices = len(Graph)

    for v in range(num_vertices):
        TransitiveClosure[v][v] = 1

    for u in range(num_vertices):
        for v in range(num_vertices):
            if Graph[u][v]:
                TransitiveClosure[u][v] = 1

    for w in range(num_vertices):
        for u in range(num_vertices):
            for v in range(num_vertices):
                if TransitiveClosure[u][w] and TransitiveClosure[w][v]:
                    TransitiveClosure[u][v] = 1

    return TransitiveClosure

二、自顶向下算法:
自顶向下算法也是传递闭包算法的一种实现方式,通过递归地计算每对顶点的可达性,构建出图的传递闭包。其算法步骤如下:

家作
家作

淘宝推出的家装家居AI创意设计工具

下载
  1. 初始化传递闭包矩阵TransitiveClosure,将其设置为图的邻接矩阵。
  2. 对于每一对顶点(u,v),如果存在一条从u到v的边,则将TransitiveClosureu设置为1。
  3. 对于每一对顶点(u,v),以及所有其他顶点w,如果TransitiveClosureu和TransitiveClosurew均为1,则将TransitiveClosureu设置为1。
  4. 循环迭代第3步,直到传递闭包矩阵不再发生变化为止。

下面是自顶向下算法的具体代码示例,以邻接矩阵Graph和传递闭包矩阵TransitiveClosure为输入:

def transitive_closure(Graph, TransitiveClosure):
    num_vertices = len(Graph)

    for u in range(num_vertices):
        for v in range(num_vertices):
            if Graph[u][v]:
                TransitiveClosure[u][v] = 1

    for w in range(num_vertices):
        for u in range(num_vertices):
            for v in range(num_vertices):
                if TransitiveClosure[u][w] and TransitiveClosure[w][v]:
                    TransitiveClosure[u][v] = 1

    return TransitiveClosure

三、对比分析:

  1. 时间复杂度:自底向上算法和自顶向下算法的时间复杂度均为O(V^3),其中V表示顶点数。
  2. 空间复杂度:自底向上算法和自顶向下算法的空间复杂度均为O(V^2)。
  3. 实际应用:自底向上算法适用于图的规模较小的情况下,而自顶向下算法适用于图的规模较大的情况下。自底向上算法在计算时需要存储全部的邻接矩阵,而自顶向下算法可以利用递归的方式对图进行分割计算。
  4. 算法效率:自底向上算法在初始阶段需要将邻接矩阵复制到传递闭包矩阵中,而自顶向下算法则直接在邻接矩阵上进行计算,所以自顶向下算法在初始阶段的效率更高。

结论:
传递闭包算法的两种实现方式,自底向上算法和自顶向下算法,在时间复杂度和空间复杂度上基本相同,但在实际应用和初始阶段的效率上有所差异。根据具体的需求和图的规模选择合适的实现方式,以获得更好的运行效率和性能。

相关专题

更多
go语言闭包相关教程大全
go语言闭包相关教程大全

本专题整合了go语言闭包相关数据,阅读专题下面的文章了解更多相关内容。

130

2025.07.29

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

61

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

41

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

32

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

41

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

198

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

9

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

8

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
SQL 教程
SQL 教程

共61课时 | 3.2万人学习

C++教程
C++教程

共115课时 | 10.7万人学习

MySQL 初学入门(mosh老师)
MySQL 初学入门(mosh老师)

共3课时 | 0.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号