0

0

提升工程效率——增强检索生成(RAG)

王林

王林

发布时间:2023-10-14 20:17:01

|

1924人浏览过

|

来源于51CTO.COM

转载

随着gpt-3等大型语言模型的问世,自然语言处理(nlp)领域取得了重大突破。这些语言模型具备生成类人文本的能力,并已广泛应用于各种场景,如聊天机器人和翻译

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

提升工程效率——增强检索生成(RAG)

然而,当涉及到专业化和定制化的应用场景时,通用的大语言模型可能在专业知识方面会有所不足。用专业的语料库对这些模型进行微调往往昂贵且耗时。“检索增强生成”(RAG)为专业化应用提供了一个新技术方案。        

提升工程效率——增强检索生成(RAG)

下面我们主要介绍RAG如何工作,并通过一个实际的例子,将产品手册作为专业语料库,使用GPT-3.5 Turbo来作为问答模型,验证其有效性。

案例:开发一个聊天机器人,能够回答与特定产品相关的问题。该企业拥有独特的用户手册

RAG介绍

RAG 提供了一种有效的解决方案,用于特定领域的问答。它主要通过将行业知识转化为向量进行存储和检索,并将检索结果与用户问题结合形成提示信息,最终利用大型模型生成合适的回答。通过结合检索机制和语言模型,大大增强了模型的响应能力

创建聊天机器人程序的步骤如下:

  1. 读取PDF(用户手册PDF文件)并使用chunk_size为1000个令牌进行令牌化。
  2. 创建向量(可以使用OpenAI EmbeddingsAPI来创建向量)。
  3. 在本地向量库中存储向量。我们将使用ChromaDB作为向量数据库(向量数据库也可以使用Pinecone或其他产品替代)。
  4. 用户发出具有查询/问题的提示。
  5. 根据用户的问题从向量数据库检索出知识上下文数据。这个知识上下文数据将在后续步骤中与提示词结合使用,来增强提示词,通常被称为上下文丰富。
  6. 提示词包含用户问题和增强的上下文知识一起被传递给LLM
  7. LLM 基于此上下文进行回答。

动手开发

(1)设置Python虚拟环境        设置一个虚拟环境来沙箱化我们的Python,以避免任何版本或依赖项冲突。执行以下命令以创建新的Python虚拟环境。

需要重写的内容是:pip安装virtualenv,python3 -m venv ./venv,source venv/bin/activate

需要进行改写的内容是:(2)生成OpenAI密钥

使用GPT需要一个OpenAI密钥来进行访问

提升工程效率——增强检索生成(RAG)

需要进行重写的内容是:(3)安装依赖库

安装程序需要的各种依赖项。包括以下几个库:

  • lanchain:一个开发LLM应用程序的框架。
  • chromaDB:这是用于持久化向量嵌入的VectorDB。
  • unstructured:用于预处理Word/PDF文档。
  • tiktoken: Tokenizer framework
  • pypdf:读取和处理PDF文档的框架。
  • openai:访问OpenAI的框架。
pip install langchainpip install unstructuredpip install pypdfpip install tiktokenpip install chromadbpip install openai

创建一个环境变量来存储OpenAI密钥。

问问小宇宙
问问小宇宙

问问小宇宙是小宇宙团队出品的播客AI检索工具

下载
export OPENAI_API_KEY=

(4)将用户手册PDF文件转化为向量并将其存储在ChromaDB中

将所有需要使用的依赖库和函数导入

import osimport openaiimport tiktokenimport chromadbfrom langchain.document_loaders import OnlinePDFLoader, UnstructuredPDFLoader, PyPDFLoaderfrom langchain.text_splitter import TokenTextSplitterfrom langchain.memory import ConversationBufferMemoryfrom langchain.embeddings.openai import OpenAIEmbeddingsfrom langchain.vectorstores import Chromafrom langchain.llms import OpenAIfrom langchain.chains import ConversationalRetrievalChain

读取PDF,标记化文档并拆分文档。

loader = PyPDFLoader("Clarett.pdf")pdfData = loader.load()text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)splitData = text_splitter.split_documents(pdfData)

创建一个chroma集合,和一个存储chroma数据的本地目录。然后,创建一个向量(embeddings)并将其存储在ChromaDB中。

collection_name = "clarett_collection"local_directory = "clarett_vect_embedding"persist_directory = os.path.join(os.getcwd(), local_directory)openai_key=os.environ.get('OPENAI_API_KEY')embeddings = OpenAIEmbeddings(openai_api_key=openai_key)vectDB = Chroma.from_documents(splitData,embeddings,collection_name=collection_name,persist_directory=persist_directory)vectDB.persist()

执行此代码后,您应该看到一个已经创建好的文件夹,用于存储向量。

提升工程效率——增强检索生成(RAG)

在将向量嵌入存储在ChromaDB后,可以使用LangChain中的ConversationalRetrievalChain API来启动一个聊天历史组件

memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)chatQA = ConversationalRetrievalChain.from_llm(OpenAI(openai_api_key=openai_key, temperature=0, model_name="gpt-3.5-turbo"), vectDB.as_retriever(), memory=memory)

初始化了langchan之后,我们可以使用它来聊天/Q A。下面的代码中,接受用户输入的问题,并在用户输入'done'之后,将问题传递给LLM,以获得答复并打印出来。

chat_history = []qry = ""while qry != 'done':qry = input('Question: ')if qry != exit:response = chatQA({"question": qry, "chat_history": chat_history})print(response["answer"])

提升工程效率——增强检索生成(RAG)

提升工程效率——增强检索生成(RAG)

总之

RAG将GPT等语言模型的优势与信息检索的优势结合在一起。通过利用特定的知识上下文信息来增强提示词的丰富度,使得语言模型能够生成更准确、与知识上下文相关的回答。RAG提供了一种比“微调”更高效且成本效益更好的解决方案,为行业应用或企业应用提供可定制化的互动方案

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

707

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

734

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

616

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1234

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

573

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

695

2023.08.11

笔记本电脑卡反应很慢处理方法汇总
笔记本电脑卡反应很慢处理方法汇总

本专题整合了笔记本电脑卡反应慢解决方法,阅读专题下面的文章了解更多详细内容。

1

2025.12.25

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
PHP自制框架
PHP自制框架

共8课时 | 0.6万人学习

Vue3.x 工具篇--十天技能课堂
Vue3.x 工具篇--十天技能课堂

共26课时 | 1.3万人学习

Vue3.x 核心篇--十天技能课堂
Vue3.x 核心篇--十天技能课堂

共30课时 | 1.4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号