0

0

循环调度的C程序

王林

王林

发布时间:2023-09-25 17:09:02

|

916人浏览过

|

来源于tutorialspoint

转载

we are given with the n processes with their corresponding burst time and time quantum and the task is to find the average waiting time and average turnaround time and display the result.

What is Round Robin Scheduling?

Round robin is a CPU scheduling algorithm that is designed especially for time sharing systems. It is more like a FCFS scheduling algorithm with one change that in Round Robin processes are bounded with a quantum time size. A small unit of time is known as Time Quantum or Time Slice. Time quantum can range from 10 to 100 milliseconds. CPU treat ready queue as a circular queue for executing the processes with given time slice. It follows preemptive approach because fixed time are allocated to processes. The only disadvantage of it is overhead of context switching.

What we need to calculate?

Completion Time is the time required by the process to complete its execution

Turnaround Time is the time interval between the submission of a process and its completion.

Turnaround Time = completion of a process – submission of a process

Waiting Time is the difference between turnaround time and burst time

Waiting Time = turnaround time – burst time

Example

We are given with 3 processes P1, P2 and P3 with their corresponding burst time as 24, 3 and 3

云网OA
云网OA

采用JSP开发的办公自动化产品、基于B/S结构,运行环境:JDK v1.5、Tomcat v5.5、MySQL v4.1,三者均为以上版本其他相关内容:可视化流程设计: 流程支持串签、会签和分支流程,可以设置流程节点的修改、删除权限,并可指定流程中各个用户在表单中可以填写的域。智能表单所见即所得设计: 智能设计,自动在数据库中生成表格,方便优化程序 公共交流: 集论坛、博客、聊天室于一体文件柜:C

下载
Process Burst Time
P1 24
P2 3
P3 3

Since the time quantum is of 4 milliseconds, process P1 gets the first 4 milliseconds but it requires another 20 millisecond to complete its execution but CPU will preempt it after the first time quantum and CPU will be allocated to the next process P2. As shown in the table, Process P2 requires only 3 milliseconds to complete its execution so CPU will be allocated for time quantum of 3 milliseconds only instead of 4 milliseconds.

循环调度的C程序

Using the Gantt chart, Average waiting time is calculated as given below −

Average waiting time = 17/3 = 5.66 milliseconds

Algorithm

Start
Step 1-> In function int turnarroundtime(int processes[], int n, int bt[], int wt[], int tat[])
   Loop For i = 0 and i < n and i++
      Set tat[i] = bt[i] + wt[i]
   return 1
Step 2-> In function int waitingtime(int processes[], int n, int bt[], int wt[], int quantum)
Declare rem_bt[n]
   Loop For i = 0 and i < n and i++
      Set rem_bt[i] = bt[i]
      Set t = 0
   Loop While (1)
      Set done = true
   Loop For i = 0 and i < n and i++
      If rem_bt[i] > 0 then,
         Set done = false
      If rem_bt[i] > quantum then,
         Set t = t + quantum
         Set rem_bt[i] = rem_bt[i] - quantum
      Else
         Set t = t + rem_bt[i]
         Set wt[i] = t - bt[i]
         Set rem_bt[i] = 0
      If done == true then,
   Break
Step 3->In function int findavgTime(int processes[], int n, int bt[], int quantum)
   Declare and initialize wt[n], tat[n], total_wt = 0, total_tat = 0
   Call function waitingtime(processes, n, bt, wt, quantum)
   Call function turnarroundtime(processes, n, bt, wt, tat)
   Print "Processes Burst Time Waiting Time turnaround time "
   Loop For i=0 and i In function int main()
   Delcare and initialize processes[] = { 1, 2, 3}
   Declare and initialize n = sizeof processes / sizeof processes[0]
   Declare and initialize burst_time[] = {8, 6, 12}
   Set quantum = 2
   Call function findavgTime(processes, n, burst_time, quantum)

Example

 实例演示

#include 
// Function to calculate turn around time
int turnarroundtime(int processes[], int n,
int bt[], int wt[], int tat[]) {
   // calculating turnaround time by adding
   // bt[i] + wt[i]
   for (int i = 0; i < n ; i++)
   tat[i] = bt[i] + wt[i];
   return 1;
}
// Function to find the waiting time for all
// processes
int waitingtime(int processes[], int n,
int bt[], int wt[], int quantum) {
   // Make a copy of burst times bt[] to store remaining
   // burst times.
   int rem_bt[n];
   for (int i = 0 ; i < n ; i++)
   rem_bt[i] = bt[i];
   int t = 0; // Current time
   // Keep traversing processes in round robin manner
   // until all of them are not done.
   while (1) {
      bool done = true;
      // Traverse all processes one by one repeatedly
      for (int i = 0 ; i < n; i++) {
         // If burst time of a process is greater than 0
         // then only need to process further
         if (rem_bt[i] > 0) {
            done = false; // There is a pending process
            if (rem_bt[i] > quantum) {
               // Increase the value of t i.e. shows
               // how much time a process has been processed
               t += quantum;
               // Decrease the burst_time of current process
               // by quantum
               rem_bt[i] -= quantum;
            }
            // If burst time is smaller than or equal to
            // quantum. Last cycle for this process
            else {
               // Increase the value of t i.e. shows
               // how much time a process has been processed
               t = t + rem_bt[i];
               // Waiting time is current time minus time
               // used by this process
               wt[i] = t - bt[i];
               // As the process gets fully executed
               // make its remaining burst time = 0
               rem_bt[i] = 0;
            }
         }
      }
      // If all processes are done
      if (done == true)
         break;
   }
   return 1;
}
// Function to calculate average time
int findavgTime(int processes[], int n, int bt[],
int quantum) {
   int wt[n], tat[n], total_wt = 0, total_tat = 0;
   // Function to find waiting time of all processes
   waitingtime(processes, n, bt, wt, quantum);
   // Function to find turn around time for all processes
   turnarroundtime(processes, n, bt, wt, tat);
   // Display processes along with all details
   printf("Processes Burst Time Waiting Time turnaround time

"); // Calculate total waiting time and total turn // around time for (int i=0; i

",i+1, bt[i], wt[i], tat[i]); } printf("Average waiting time = %f", (float)total_wt / (float)n); printf("

Average turnaround time = %f

", (float)total_tat / (float)n); return 1; } // main function int main() { // process id's int processes[] = { 1, 2, 3}; int n = sizeof processes / sizeof processes[0]; // Burst time of all processes int burst_time[] = {8, 6, 12}; // Time quantum int quantum = 2; findavgTime(processes, n, burst_time, quantum); return 0; }

输出

循环调度的C程序

相关专题

更多
php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

2

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

0

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

2

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

6

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

22

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

3

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

2

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

1

2025.12.31

html5怎么使用
html5怎么使用

想快速上手HTML5开发?本合集为你整理最实用的HTML5使用指南!涵盖HTML5基础语法、主流框架(如Bootstrap、Vue、React)集成方法,以及无需安装、直接在线编辑运行的平台推荐(如CodePen、JSFiddle)。无论你是新手还是进阶开发者,都能轻松掌握HTML5网页制作、响应式布局与交互功能开发,零配置开启高效前端编程之旅!

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号