0

0

构建支持任意深度嵌套的 n 叉表达式树(含递归解析与动态节点访问)

霞舞

霞舞

发布时间:2026-01-06 10:32:39

|

265人浏览过

|

来源于php中文网

原创

构建支持任意深度嵌套的 n 叉表达式树(含递归解析与动态节点访问)

本文介绍如何通过递归下降解析器将括号嵌套表达式(如 `["(", "a", "&", "b", ")", "|", "c"]`)构建成 n 叉树,并支持在任意深度动态定位、修改或添加子节点,避免硬编码 `.nodes[x].nodes[y]...`。

在处理多层嵌套逻辑表达式(如 ["(", "MORE", "&", "(", "COMPLICATED", "|", "(", "EXPRESSION", "&", "PRESENTING", ")", "|", "MANY", ")", ")", "|", "(", "DEEPER", "&", "(", "LEVELS", "|", "FOR", "|", "TREE", ")", ")"])时,传统“逐级索引”方式(如 root.nodes[0].nodes[1].nodes[2].add_node(...))既不可扩展也不可维护——因为嵌套深度动态变化(2 层到 5 层不等),无法预知路径长度。

根本解法是用递归替代路径拼接:不构造字符串形式的 .nodes[0].nodes[2],而是设计一个能接受“路径坐标列表”的通用访问函数,并配合递归建树逻辑实现自顶向下的结构化构建。

✅ 推荐方案:递归建树 + 路径导航 API

我们重构树类,增强其可操作性,并提供 get_node_by_path() 和 set_child_at_path() 等工具方法:

class NonBinTree:
    def __init__(self, val):
        self.val = val
        self.nodes = []  # 子节点列表,支持任意数量子节点

    def add_node(self, val):
        """添加新子节点(值为 val 的新 Node)"""
        self.nodes.append(NonBinTree(val))
        return self.nodes[-1]

    def get_node_by_path(self, path):
        """
        根据路径列表访问节点,例如 path=[0, 1, 2] → root.nodes[0].nodes[1].nodes[2]
        若路径越界或非整数,抛出 IndexError 或 TypeError
        """
        node = self
        for idx in path:
            if not isinstance(idx, int):
                raise TypeError(f"Path index must be int, got {type(idx).__name__}")
            if not (0 <= idx < len(node.nodes)):
                raise IndexError(f"Index {idx} out of range for node with {len(node.nodes)} children")
            node = node.nodes[idx]
        return node

    def set_child_at_path(self, path, new_child):
        """
        在指定路径位置替换子节点(path[:-1] 定位父节点,path[-1] 指定下标)
        例如 path=[0, 2] 表示:root.nodes[0] 的第 2 个子节点被 new_child 替换
        """
        if not path:
            raise ValueError("Path cannot be empty for set_child_at_path")
        parent_path, child_idx = path[:-1], path[-1]
        parent = self if not parent_path else self.get_node_by_path(parent_path)
        if not isinstance(child_idx, int) or not (0 <= child_idx < len(parent.nodes)):
            raise IndexError(f"Invalid child index {child_idx} for parent with {len(parent.nodes)} children")
        parent.nodes[child_idx] = new_child

    def __repr__(self):
        children_repr = ", ".join(repr(n) for n in self.nodes)
        return f"NonBinTree({self.val}): [{children_repr}]"

? 递归解析器:自动处理任意嵌套层级

核心思想是迭代器 + 递归下降:用 iter(expr) 创建消耗式遍历器,每遇到 "(" 就递归调用解析子表达式,遇到 ")" 或运算符时回溯。该方法天然支持无限嵌套,无需手动管理或深度计数。

创一AI
创一AI

AI帮你写短视频脚本

下载
def expr_to_tree(expr):
    it = iter(expr)

    def parse_operand():
        token = next(it, None)
        if token is None:
            raise ValueError("Unexpected end of expression")
        if token == "(":
            return parse_expr()
        elif token in ("&", "|", ")"):
            raise ValueError(f"Expected operand, got {repr(token)}")
        else:
            return NonBinTree(token)

    def parse_expr():
        # 解析首个操作数
        left = parse_operand()
        # 查看下一个 token:是否为顶层运算符?
        op = next(it, None)
        if op not in ("&", "|"):
            # 无运算符 → 单节点表达式,直接返回
            if op == ")":
                return left
            elif op is None:
                return left
            else:
                raise ValueError(f"Unexpected token after operand: {repr(op)}")

        # 构建以 op 为根的子树
        root = NonBinTree(op)
        root.add_node(left)  # 左操作数作为第一个子节点

        # 继续读取后续操作数(直到遇到 ')' 或结束)
        while True:
            token = next(it, None)
            if token is None or token == ")":
                break
            elif token in ("&", "|"):
                # 新运算符出现:说明当前 op 是更高层的运算符,应停止本层解析
                # 将 token “推回”,由上层处理
                it = iter([token] + list(it))  # 简单模拟 peek + pushback(生产环境建议用更健壮方式)
                break
            else:
                # 普通操作数或 '('
                if token == "(":
                    operand = parse_expr()
                else:
                    operand = NonBinTree(token)
                root.add_node(operand)

        return root

    # 启动解析(顶层无括号约束)
    result = parse_expr()
    # 检查是否还有未消费 token(防多余内容)
    leftover = list(it)
    if leftover:
        raise ValueError(f"Unconsumed tokens: {leftover}")
    return result
? 注意:上述 parse_expr 中的 it = iter([token] + list(it)) 是教学简化写法;实际项目中推荐使用 itertools.chain([token], it) 或封装带 peek() 的迭代器类,避免多次 list(it) 导致性能损耗。

? 使用示例

complicated_expr = ["(", "MORE", "&", "(", "COMPLICATED", "|","(","EXPRESSION","&","PRESENTING",")","|", "MANY", ")", ")", "|", "(", "DEEPER", "&", "(", "LEVELS", "|", "FOR", "|", "TREE", ")",")"]

tree = expr_to_tree(complicated_expr)
print(tree)
# 输出结构化树(省略部分细节):
# NonBinTree(|): [NonBinTree(&): [...], NonBinTree(&): [...]]

# ✅ 动态访问第 0 层子节点的第 1 个子节点的第 2 个子节点(假设存在)
try:
    target = tree.get_node_by_path([0, 1, 2])
    print("Found node:", target.val)
except (IndexError, TypeError) as e:
    print("Path invalid:", e)

# ✅ 在 [0, 1, 0] 处插入新子节点
new_node = NonBinTree("DYNAMICALLY_ADDED")
tree.set_child_at_path([0, 1, 0], new_node)

⚠️ 关键注意事项

  • 不要手动拼接属性链:eval("tree.nodes[0].nodes[1].add_node(...)") 或字符串格式化路径不仅危险(代码注入风险),且无法做静态类型检查和 IDE 自动补全。
  • 路径有效性必须校验:get_node_by_path 应始终检查索引范围,避免 IndexError 影响主流程。
  • 递归深度限制:Python 默认递归限制约 1000 层,若表达式极端嵌套(>500 层),需调用 sys.setrecursionlimit() —— 但更优解是改用显式栈的迭代版本(本文未展开)。
  • 运算符优先级未建模:当前实现按出现顺序左结合(A & B | C 视为 (A & B) | C)。如需支持优先级(如 & 优先于 |),需引入算符优先分析(Shunting Yard)或增加 precedence 参数。

✅ 总结

面对动态深度的 n 叉表达式树,破局点在于:

  1. 放弃硬编码路径,转而使用 path: List[int] + 递归/循环导航;
  2. 用迭代器驱动的递归下降解析器替代状态机或多层嵌套 for 循环,让语法结构自然映射到树结构;
  3. 增强树类 API(如 get_node_by_path, set_child_at_path),使任意层级的操作统一、安全、可测试。

这套模式不仅适用于布尔表达式,还可扩展至 JSON Schema 解析、AST 构建、配置树加载等场景——只要输入具备嵌套文法,即可复用该递归+路径范式。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

734

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

631

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

753

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1258

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

PPT动态图表制作教程大全
PPT动态图表制作教程大全

本专题整合了PPT动态图表制作相关教程,阅读专题下面的文章了解更多详细内容。

13

2026.01.07

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.8万人学习

SciPy 教程
SciPy 教程

共10课时 | 1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号