0

0

Pandas DataFrame高效查找:优化列表元素在列中的存在性检查

碧海醫心

碧海醫心

发布时间:2025-11-02 13:47:19

|

534人浏览过

|

来源于php中文网

原创

Pandas DataFrame高效查找:优化列表元素在列中的存在性检查

本教程旨在解决在pandas dataframe中高效查找列表元素是否存在于某一列的问题。通过对比低效的嵌套循环方案与pandas提供的向量化操作,文章详细介绍了如何利用`in`操作符进行精确匹配,以及如何使用`str.contains()`等方法进行子字符串匹配。旨在指导读者采用更简洁、性能更优的代码,避免常见的迭代陷阱,从而显著提升数据处理效率。

引言:DataFrame中元素查找的挑战

在数据分析和处理过程中,我们经常需要检查一个给定列表中的元素是否出现在Pandas DataFrame的某一特定列中。例如,你可能有一个包含多个关键词的列表,需要找出DataFrame中哪些行包含了这些关键词。直观的解决方案往往是使用嵌套循环,但这在处理大型数据集时会导致性能瓶颈,代码执行效率低下。本教程将深入探讨如何利用Pandas的强大功能,以更高效、更“Pythonic”的方式解决这一问题。

低效的循环遍历方案

许多初学者在面对此类问题时,会自然地想到使用Python的for循环结合Pandas的iterrows()方法来逐行检查。然而,iterrows()本身就不是为高性能迭代设计的,因为它会为每一行生成一个Series对象,这涉及到额外的开销。当内部循环还需要进行字符串匹配(如子字符串查找)时,效率问题会更加突出。

考虑以下示例代码,它尝试计算每个流派的总播放量:

import pandas as pd

# 示例数据
spotify_data = pd.DataFrame({
    'Genre': ['Pop;Rock', 'Jazz', 'Classical;Pop', 'Rock', 'Electronic'],
    'Streams': [1000, 500, 800, 1200, 700]
})
genre_names = ['Pop', 'Rock'] # 需要查找的流派列表

streams_on_genre_inefficient = []
for genre in genre_names:
    streams = 0
    for index, row in spotify_data.iterrows():
        # 这里的 'in' 操作符是进行子字符串查找
        if genre in row['Genre']:
            streams += row['Streams']
    streams_on_genre_inefficient.append(streams)

print(f"低效方案计算结果: {streams_on_genre_inefficient}")
# 预期输出: [1800, 2200] (Pop出现在'Pop;Rock'和'Classical;Pop'中, Rock出现在'Pop;Rock'和'Rock'中)

这段代码的性能问题在于:

  1. 外部循环:遍历genre_names列表。
  2. 内部循环:spotify_data.iterrows()逐行迭代DataFrame,对于N行数据,会执行N次。
  3. 字符串查找:if genre in row['Genre']在每次内部循环中进行字符串子串匹配。

这导致了O(M N L)的近似时间复杂度,其中M是genre_names的长度,N是DataFrame的行数,L是Genre列中字符串的平均长度。在大数据量下,这种方法会变得非常慢。

高效的精确匹配:使用in操作符

如果你的需求是检查一个元素是否精确地存在于DataFrame Series的values(底层NumPy数组)中,那么可以直接使用Python的in操作符。这种方法利用了底层优化的数据结构,通常比手动遍历要快得多。

import pandas as pd

data = {'a': [1, 2, 3], 'b': [4, 5, 6], 'c':['apple','orange','banana']}
df = pd.DataFrame(data)

print(f"5 是否在 df['b'].values 中? {5 in df['b'].values}")
print(f"'pear' 是否在 df['c'].values 中? {'pear' in df['c'].values}")
print(f"'apple' 是否在 df['c'].values 中? {'apple' in df['c'].values}")

输出示例:

5 是否在 df['b'].values 中? True
'pear' 是否在 df['c'].values 中? False
'apple' 是否在 df['c'].values 中? True

注意事项:

  • 此方法仅适用于精确匹配。它会检查整个元素是否相等,而不是作为子字符串存在。
  • 使用.values访问底层NumPy数组通常比直接在Series上使用in操作符更高效,因为Series的in操作符会检查索引和值。

高效的子字符串匹配:利用Series.str.contains()

在原始问题中,if genre in row['Genre']实际上是进行子字符串查找。对于这类需求,Pandas提供了强大的Series.str访问器,其中str.contains()方法是进行模式匹配的理想选择。它支持正则表达式,并且是完全向量化的,这意味着它在C语言级别执行操作,效率远高于Python循环。

Lifetoon
Lifetoon

免费的AI漫画创作平台

下载

1. 检查单个子字符串是否存在

# 示例数据 (同上)
# spotify_data = pd.DataFrame({
#     'Genre': ['Pop;Rock', 'Jazz', 'Classical;Pop', 'Rock', 'Electronic'],
#     'Streams': [1000, 500, 800, 1200, 700]
# })

# 检查 'Pop' 是否作为子字符串存在于 Genre 列中
contains_pop = spotify_data['Genre'].str.contains('Pop', case=False, na=False)
print("\nGenre 列中包含 'Pop' 的行 (忽略大小写):")
print(spotify_data[contains_pop])

case=False表示忽略大小写,na=False表示将NaN值视为不包含模式。

2. 检查列表中任意一个子字符串是否存在

如果你想检查DataFrame列中的值是否包含genre_names列表中的任意一个元素,可以构建一个正则表达式模式,使用|(或)操作符。

genres_to_find = ['Pop', 'Rock']
# 构建正则表达式模式,例如 'Pop|Rock'
pattern = '|'.join(genres_to_find)

matching_rows = spotify_data['Genre'].str.contains(pattern, case=False, na=False)
print(f"\nGenre 列中包含 '{pattern}' 中任一元素的行:")
print(spotify_data[matching_rows])

结合子字符串匹配与数据聚合:重构原始需求

回到用户最初的需求:计算每个特定genre的总Streams。我们可以利用str.contains()的向量化能力,结合Pandas的条件筛选和聚合功能来高效实现。

# 示例数据和流派列表 (同上)
# spotify_data = pd.DataFrame({
#     'Genre': ['Pop;Rock', 'Jazz', 'Classical;Pop', 'Rock', 'Electronic'],
#     'Streams': [1000, 500, 800, 1200, 700]
# })
# genre_names = ['Pop', 'Rock']

streams_on_genre_vectorized_list = []
for genre in genre_names:
    # 使用str.contains进行向量化查找,返回一个布尔Series
    is_genre_present = spotify_data['Genre'].str.contains(genre, case=False, na=False)

    # 使用布尔Series进行条件筛选,然后对 'Streams' 列求和
    streams = spotify_data.loc[is_genre_present, 'Streams'].sum()
    streams_on_genre_vectorized_list.append(streams)

print(f"\n更高效的向量化方案计算结果 (列表): {streams_on_genre_vectorized_list}")

输出示例:

更高效的向量化方案计算结果 (列表): [1800, 2200]

这种方法避免了显式的Python循环遍历DataFrame的每一行,而是将字符串匹配和求和操作推送到Pandas的底层优化实现中,从而显著提升了性能。

总结与最佳实践

在Pandas DataFrame中进行元素查找时,请牢记以下最佳实践:

  1. 避免显式循环:尽量不要使用for index, row in df.iterrows():或df.apply(lambda row: ...)等逐行迭代的方式,尤其是在大数据集上。它们通常效率低下。
  2. 利用向量化操作:Pandas提供了大量高度优化的向量化方法,如Series.str访问器中的contains(), startswith(), endswith(), match()等,以及Series.isin()等。 它们能够以C语言的速度执行操作。
  3. 区分精确匹配与子字符串匹配
    • 对于精确匹配单个元素是否存在于Series的values中,使用element in series.values。
    • 对于精确匹配Series中的多个元素是否在另一个列表中,使用series.isin(list_of_elements)。
    • 对于子字符串匹配,使用series.str.contains(pattern)。
  4. 构建高效模式:当查找多个子字符串时,通过'|'.join(list_of_strings)构建正则表达式模式,可以一次性完成多个条件的匹配。

通过采纳这些策略,你将能够编写出更简洁、更高效的Pandas代码,极大地提升数据处理的性能。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号