0

0

PySpark DataFrame到嵌套JSON数组的转换教程

DDD

DDD

发布时间:2025-09-27 11:17:17

|

343人浏览过

|

来源于php中文网

原创

PySpark DataFrame到嵌套JSON数组的转换教程

本教程详细阐述了如何利用PySpark将扁平化的DataFrame结构转换为具有嵌套数组和多重出现的复杂JSON格式。通过一系列PySpark SQL函数(如pivot、struct和collect_list),我们将逐步重塑数据,最终生成符合业务需求的层次化JSON输出,为大数据场景下的数据集成与交换提供实用指导。

引言

在数据处理和集成场景中,将关系型或扁平化的数据结构转换为具有层次感的json格式是一项常见的需求。特别是在处理订单明细、商品列表等具有“一主多从”关系的数据时,需要将多个关联的行聚合成一个嵌套的json数组。pyspark作为大数据处理的强大工具,提供了丰富的api来高效完成这类复杂的数据转换。本教程将以一个具体的例子,演示如何将一个包含订单及其多个商品项的pyspark dataframe,转换为一个嵌套的json数组结构。

原始数据结构与目标JSON格式

假设我们有一个PySpark DataFrame,其结构如下所示,其中每个订单项(由itemSeqNo区分)的属性(Date, Amount, description)以行式存储:

原始DataFrame示例:

OrderID field fieldValue itemSeqNo
123 Date 01-01-23 1
123 Amount 10.00 1
123 description Pencil 1
123 Date 01-02-23 2
123 Amount 11.00 2
123 description Pen 2

我们的目标是将其转换为以下嵌套的JSON结构:

目标JSON结构:

{
   "orderDetails": {
      "orderID": "123"
   },
   "itemizationDetails": [
      {
         "Date": "01-01-23",
         "Amount": "10.00",
         "description": "Pencil"
      },
      {
         "Date": "01-02-23",
         "Amount": "11.00",
         "description": "Pen"
      }
   ]
}

可以看到,itemizationDetails是一个数组,其中每个元素代表一个订单项,其属性(Date, Amount, description)被聚合到单个对象中。

PySpark 转换步骤详解

我们将分步实现上述转换。首先,确保您已经启动了SparkSession并导入了必要的PySpark函数。

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StructType, StructField, StringType

# 初始化SparkSession
spark = SparkSession.builder.appName("NestedJsonConversion").getOrCreate()

# 创建示例DataFrame
data = [
    ("123", "Date", "01-01-23", "1"),
    ("123", "Amount", "10.00", "1"),
    ("123", "description", "Pencil", "1"),
    ("123", "Date", "01-02-23", "2"),
    ("123", "Amount", "11.00", "2"),
    ("123", "description", "Pen", "2")
]
schema = StructType([
    StructField("OrderID", StringType(), True),
    StructField("field", StringType(), True),
    StructField("fieldValue", StringType(), True),
    StructField("itemSeqNo", StringType(), True)
])
df = spark.createDataFrame(data, schema)
df.show()

步骤1:重塑DataFrame (Pivot操作)

首先,我们需要将每个订单项的属性(如Date, Amount, description)从行转换为列。这可以通过groupBy结合pivot操作实现。pivot需要一个聚合函数,这里我们使用F.first()来获取fieldValue,因为每个field在OrderID和itemSeqNo的组合下应该只有一个fieldValue。

df_pivoted = df.groupBy('OrderID', 'itemSeqNo').pivot('field').agg(F.first('fieldValue'))
df_pivoted.show()

# 预期输出:
# +-------+---------+------+---------+-----------+
# |OrderID|itemSeqNo|Amount|     Date|description|
# +-------+---------+------+---------+-----------+
# |    123|        1| 10.00| 01-01-23|     Pencil|
# |    123|        2| 11.00|01-02-23 |       Pen |
# +-------+---------+------+---------+-----------+

这一步将原本扁平化的数据结构转换成了每个订单项一行,所有相关属性作为列的宽表格式,为后续的结构化操作打下基础。

步骤2:将订单项详情打包为Struct类型

接下来,我们将每个订单项的各个属性(Amount, Date, description)打包成一个名为itemizationDetails的Struct(结构体)类型列。这使得每个订单项的完整信息可以作为一个独立的嵌套对象处理。

BgSub
BgSub

免费的AI图片背景去除工具

下载
df_item_struct = df_pivoted.withColumn(
    'itemizationDetails',
    F.struct(F.col('Amount'), F.col('Date'), F.col('description'))
)
df_item_struct.show(truncate=False)

# 预期输出:
# +-------+---------+------+---------+-----------+-------------------------+
# |OrderID|itemSeqNo|Amount|Date     |description|itemizationDetails       |
# +-------+---------+------+---------+-----------+-------------------------+
# |123    |1        |10.00 |01-01-23 |Pencil     |{10.00, 01-01-23, Pencil}|
# |123    |2        |11.00 |01-02-23 |Pen        |{11.00, 01-02-23 , Pen } |
# +-------+---------+------+---------+-----------+-------------------------+

通过F.struct()函数,我们有效地创建了一个嵌套的数据结构,其中包含了单个订单项的所有相关信息。

步骤3:按订单ID收集订单项列表

现在,我们需要将同一个OrderID下的所有itemizationDetails Struct收集到一个列表中,形成JSON中的itemizationDetails数组。这通过再次groupBy OrderID并使用F.collect_list()聚合函数实现。

df_collected_list = df_item_struct.groupBy('OrderID').agg(
    F.collect_list('itemizationDetails').alias('itemizationDetails')
)
df_collected_list.show(truncate=False)

# 预期输出:
# +-------+-----------------------------------------------------+
# |OrderID|itemizationDetails                                   |
# +-------+-----------------------------------------------------+
# |123    |[{10.00, 01-01-23, Pencil}, {11.00, 01-02-23 , Pen }]|
# +-------+-----------------------------------------------------+

F.collect_list()是创建JSON数组的关键,它将所有聚合的Struct对象收集成一个ArrayType列。

步骤4:将订单ID打包为Struct类型

为了符合目标JSON中orderDetails的嵌套结构,我们需要将OrderID也打包成一个Struct类型。

df_final_struct = df_collected_list.withColumn('orderDetails', F.struct(F.col('OrderID')))
df_final_struct.show(truncate=False)

# 预期输出:
# +-------+-----------------------------------------------------+------------+
# |OrderID|itemizationDetails                                   |orderDetails|
# +-------+-----------------------------------------------------+------------+
# |123    |[{10.00, 01-01-23, Pencil}, {11.00, 01-02-23 , Pen }]|{123}       |
# +-------+-----------------------------------------------------+------------+

这一步创建了顶层orderDetails对象。

步骤5:导出DataFrame到JSON

最后一步是将处理好的DataFrame导出为JSON格式。我们只需要选择orderDetails和itemizationDetails这两列,然后使用toJSON().collect()方法即可。

result_json_rdd = df_final_struct.select('orderDetails', 'itemizationDetails').toJSON()
result_list = result_json_rdd.collect()

for json_str in result_list:
    print(json_str)

# 预期输出(可能格式化略有不同,但内容一致):
# {"orderDetails":{"OrderID":"123"},"itemizationDetails":[{"Amount":"10.00","Date":"01-01-23","description":"Pencil"},{"Amount":"11.00","Date":"01-02-23 ","description":"Pen "}]}

toJSON()方法会将DataFrame的每一行转换为一个JSON字符串。collect()则将这些字符串收集到一个Python列表中。

完整代码示例

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import StructType, StructField, StringType

# 初始化SparkSession
spark = SparkSession.builder.appName("NestedJsonConversion").getOrCreate()

# 1. 创建示例DataFrame
data = [
    ("123", "Date", "01-01-23", "1"),
    ("123", "Amount", "10.00", "1"),
    ("123", "description", "Pencil", "1"),
    ("123", "Date", "01-02-23", "2"),
    ("123", "Amount", "11.00", "2"),
    ("123", "description", "Pen", "2")
]
schema = StructType([
    StructField("OrderID", StringType(), True),
    StructField("field", StringType(), True),
    StructField("fieldValue", StringType(), True),
    StructField("itemSeqNo", StringType(), True)
])
df = spark.createDataFrame(data, schema)

print("--- 原始 DataFrame ---")
df.show()

# 2. 重塑DataFrame:将 field 列的值转换为列名
df_pivoted = df.groupBy('OrderID', 'itemSeqNo').pivot('field').agg(F.first('fieldValue'))
print("--- Pivot 后的 DataFrame ---")
df_pivoted.show()

# 3. 将订单项详情打包为Struct类型
df_item_struct = df_pivoted.withColumn(
    'itemizationDetails',
    F.struct(F.col('Amount'), F.col('Date'), F.col('description'))
)
print("--- itemizationDetails Struct 创建后的 DataFrame ---")
df_item_struct.show(truncate=False)

# 4. 按订单ID收集订单项列表
df_collected_list = df_item_struct.groupBy('OrderID').agg(
    F.collect_list('itemizationDetails').alias('itemizationDetails')
)
print("--- 收集 itemizationDetails 列表后的 DataFrame ---")
df_collected_list.show(truncate=False)

# 5. 将订单ID打包为Struct类型
df_final_struct = df_collected_list.withColumn('orderDetails', F.struct(F.col('OrderID')))
print("--- orderDetails Struct 创建后的 DataFrame ---")
df_final_struct.show(truncate=False)

# 6. 导出DataFrame到JSON
result_json_rdd = df_final_struct.select('orderDetails', 'itemizationDetails').toJSON()
result_list = result_json_rdd.collect()

print("\n--- 最终 JSON 输出 ---")
for json_str in result_list:
    import json
    # 为了更好的可读性,这里对JSON字符串进行美化打印
    print(json.dumps(json.loads(json_str), indent=3, ensure_ascii=False))

# 停止SparkSession
spark.stop()

注意事项与最佳实践

  1. 数据类型匹配: 在使用F.struct()和F.collect_list()时,确保列的数据类型符合预期。如果需要,可以使用cast()函数进行类型转换。
  2. 列名一致性: 确保pivot操作后生成的列名与目标JSON结构中的键名一致。
  3. 性能优化: 对于大规模数据集,pivot操作可能会消耗大量内存和计算资源。如果field列的唯一值非常多,pivot可能不是最佳选择。在这种情况下,可以考虑其他方法,例如使用map类型或自定义UDF(用户定义函数),但通常内置函数性能更优。
  4. 空值处理: 在聚合和结构化过程中,PySpark会根据默认行为处理空值。如果需要特定的空值处理逻辑(例如,在JSON中省略空字段),可能需要在生成Struct之前进行过滤或使用when().otherwise()。
  5. Schema定义: 在创建Struct时,PySpark会自动推断Schema。如果需要更严格的Schema控制或处理复杂类型,可以显式定义StructType。
  6. toJSON()与write.json(): toJSON().collect()适用于将结果收集到驱动程序内存中进行进一步处理或打印。对于将大量数据直接写入文件系统(如HDFS、S3)的场景,推荐使用df.write.json("output_path"),它能以分布式方式写入,且每行一个JSON对象。如果需要一个包含所有JSON对象的单个文件,可能需要先coalesce(1)再写入。

总结

通过本教程,我们学习了如何利用PySpark的pivot、struct和collect_list等核心函数,将一个扁平化的DataFrame逐步转换为具有复杂嵌套结构和数组的JSON格式。这种转换能力在处理来自关系型数据库的数据,并将其适配到API接口、文档型数据库或消息队列等需要层次化数据的场景中至关重要。掌握这些PySpark数据转换技巧,将极大地提升您在大数据平台上的数据处理效率和灵活性。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

698

2023.08.11

小游戏4399大全
小游戏4399大全

4399小游戏免费秒玩大全来了!无需下载、即点即玩,涵盖动作、冒险、益智、射击、体育、双人等全品类热门小游戏。经典如《黄金矿工》《森林冰火人》《狂扁小朋友》一应俱全,每日更新最新H5游戏,支持电脑与手机跨端畅玩。访问4399小游戏中心,重温童年回忆,畅享轻松娱乐时光!官方入口安全绿色,无插件、无广告干扰,打开即玩,快乐秒达!

30

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号