0

0

Python中从复杂嵌套字典中提取并重构数据

碧海醫心

碧海醫心

发布时间:2025-09-21 10:59:28

|

1064人浏览过

|

来源于php中文网

原创

Python中从复杂嵌套字典中提取并重构数据

本教程详细介绍了如何利用Python的字典推导式(Dictionary Comprehension),高效地从嵌套字典结构中提取特定键值对,并将其重构为新的、扁平化的字典。通过一个实际的API数据示例,文章演示了如何将列表中的每个子字典的token和tsym字段转换为新字典的键和值,从而实现数据的精准筛选与重组,提升数据处理的简洁性和效率。

1. 数据结构分析

在实际的编程任务中,我们经常会遇到从api或其他数据源获取的复杂嵌套数据结构。例如,以下是一个典型的api响应数据,它是一个字典,其中包含一个键为'1'的列表,而该列表又由多个包含金融工具详细信息的字典组成:

my_dict = {
    '1': [
        {'exch': 'NFO', 'token': '43214', 'tsym': 'NIFTY07DEC23C20700', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20700 CE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'CE'},
        {'exch': 'NFO', 'token': '43218', 'tsym': 'NIFTY07DEC23P20700', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20700 PE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'PE'},
        {'exch': 'NFO', 'token': '43206', 'tsym': 'NIFTY07DEC23C20600', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20600 CE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'CE'},
        {'exch': 'NFO', 'token': '43207', 'tsym': 'NIFTY07DEC23P20600', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20600 PE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'PE'}
    ]
}

这个my_dict的类型是,并且len(my_dict)返回1,表明它只有一个顶级键。我们需要处理的是其内部列表中的每个字典。

2. 目标转换

我们的目标是从上述复杂数据中提取特定信息,并将其重构为一个新的、更易于操作的字典。具体来说,我们希望将每个内部字典中的'token'值作为新字典的键,而'tsym'值作为新字典的值。最终期望的输出格式如下:

new_dict = {
    '43214': 'NIFTY07DEC23C20700',
    '43218': 'NIFTY07DEC23P20700',
    '43206': 'NIFTY07DEC23C20600',
    '43207': 'NIFTY07DEC23P20600'
}

3. 解决方案:字典推导式

Python的字典推导式(Dictionary Comprehension)提供了一种简洁而高效的方式来创建字典。它允许我们在一行代码中迭代一个可迭代对象(如列表),并根据每个元素生成键值对,从而构建新的字典。

针对我们的需求,可以使用如下字典推导式来实现数据转换:

立即学习Python免费学习笔记(深入)”;

dct = {d['token']: d['tsym'] for d in my_dict['1']}

4. 代码详解

让我们逐步解析这个字典推导式:

  1. my_dict['1']: 首先,我们通过键'1'访问my_dict,获取到包含所有金融工具详细信息的列表。这是我们进行迭代的基础数据源。
  2. for d in my_dict['1']: 这是一个标准的for循环语法,它会遍历my_dict['1']这个列表中的每一个元素。在每次迭代中,变量d将代表列表中的一个子字典(例如,{'exch': 'NFO', 'token': '43214', ...})。
  3. d['token']: 对于每次迭代中的子字典d,我们使用键'token'来提取其对应的值。这个值将作为新字典的键。
  4. d['tsym']: 同样,我们使用键'tsym'来提取其对应的值。这个值将作为新字典的值。
  5. {d['token']: d['tsym'] ...}: 整个结构{key_expression: value_expression for item in iterable}是字典推导式的核心。它指示Python为iterable中的每个item计算key_expression和value_expression,并将它们作为新的键值对添加到最终的字典中。

将上述代码应用于我们的my_dict,dct变量将包含我们期望的重构后的字典。

Sora
Sora

Sora是OpenAI发布的一种文生视频AI大模型,可以根据文本指令创建现实和富有想象力的场景。

下载

5. 完整示例与输出

my_dict = {
    '1': [
        {'exch': 'NFO', 'token': '43214', 'tsym': 'NIFTY07DEC23C20700', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20700 CE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'CE'},
        {'exch': 'NFO', 'token': '43218', 'tsym': 'NIFTY07DEC23P20700', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20700 PE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'PE'},
        {'exch': 'NFO', 'token': '43206', 'tsym': 'NIFTY07DEC23C20600', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20600 CE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'CE'},
        {'exch': 'NFO', 'token': '43207', 'tsym': 'NIFTY07DEC23P20600', 'weekly': 'W1', 'dname': 'NIFTY 07DEC23 20600 PE ', 'instname': 'OPTIDX', 'pp': '2', 'ls': '50', 'ti': '0.05', 'optt': 'PE'}
    ]
}

# 使用字典推导式提取并重构数据
new_dict = {d['token']: d['tsym'] for d in my_dict['1']}

print(new_dict)

输出结果:

{'43214': 'NIFTY07DEC23C20700', '43218': 'NIFTY07DEC23P20700', '43206': 'NIFTY07DEC23C20600', '43207': 'NIFTY07DEC23P20600'}

6. 注意事项与最佳实践

  • 键的唯一性:字典的键必须是唯一的。如果原始数据中存在重复的'token'值,那么在重构后的字典中,后面的重复键会覆盖前面的键值对。请确保您选择的键在逻辑上是唯一的,或者您接受这种覆盖行为。

  • 键值存在性检查:在实际应用中,如果my_dict['1']中的某个子字典可能不包含'token'或'tsym'键,直接使用d['token']或d['tsym']会引发KeyError。为了增加代码的健壮性,可以使用.get()方法提供默认值,或在推导式中添加条件过滤:

    # 使用 .get() 避免 KeyError,并过滤掉缺失关键字段的项
    new_dict_robust = {
        d.get('token'): d.get('tsym')
        for d in my_dict.get('1', []) # 使用 .get('1', []) 避免 my_dict 中没有 '1' 键时出错
        if d.get('token') is not None and d.get('tsym') is not None
    }
  • 性能:字典推导式通常比传统的for循环结合dict.update()或逐个添加键值对的方式更高效,因为它在C语言级别实现,减少了Python解释器的开销。对于大规模数据集,这种性能优势会更加明显。

  • 可读性:字典推导式以其简洁性提高了代码的可读性,尤其是在进行简单的一对一或一对多映射时。

7. 总结

通过本教程,我们学习了如何利用Python的字典推导式,从复杂的嵌套字典结构中高效、精准地提取并重构数据。字典推导式是Python中处理数据转换的强大工具,它不仅使代码更加简洁、易读,而且在性能上也有显著优势。掌握这一技巧,将极大地提升您在数据处理和分析任务中的效率和代码质量。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

727

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

630

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

747

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1237

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

576

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

703

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

194

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.7万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号