0

0

Databricks DBFS文件上传指南:API与Python SDK实践

花韻仙語

花韻仙語

发布时间:2025-09-18 13:04:22

|

930人浏览过

|

来源于php中文网

原创

Databricks DBFS文件上传指南:API与Python SDK实践

本教程详细探讨了在Databricks中上传文件到DBFS的两种主要方法。首先,介绍了使用DBFS Put API直接上传的细节,特别是内容需要Base64编码的要求及其1MB的文件大小限制。随后,重点推荐并演示了如何利用Databricks Python SDK进行更高效、更可靠的文件操作,该SDK能简化认证并支持大文件上传,是处理DBFS文件交互的首选方案。

1. 理解DBFS Put API及其局限性

databricks文件系统(dbfs)是databricks工作区中可用的分布式文件系统,用于存储数据、库和模型。当需要通过api将数据,特别是json等文本内容上传到dbfs时,常用的方法是使用/api/2.0/dbfs/put接口。

API使用要点:

  • 内容编码要求: 如果选择通过请求体中的content属性直接传递文件内容,该内容必须是经过Base64编码的字符串。这是API设计上的明确要求,直接传递原始文本或二进制数据会导致各种错误。例如,一个简单的JSON字符串{"key": "value"}在上传前需要先进行Base64编码。
  • 文件大小限制: 使用dbfs/put接口直接通过content属性上传文件存在一个显著的限制——文件大小不能超过1MB。对于任何大于此限制的文件,此方法将不再适用。
  • 文件上传选项: API文档也提及,如果content属性缺失,API会尝试使用作为HTTP POST请求主体上传的文件。然而,这种方式在实际操作中往往不如直接指定content或使用SDK来得直观和易于管理。

鉴于上述限制,尤其是1MB的文件大小限制和Base64编码的繁琐性,对于生产环境或需要处理大文件的场景,直接使用DBFS Put API通常不是最佳选择。

2. 推荐方案:利用Databricks Python SDK

为了克服直接API调用的局限性并简化DBFS文件操作,Databricks官方强烈推荐使用Databricks Python SDK。该SDK提供了一套高级抽象,能够显著简化文件上传、下载及其他DBFS交互,同时解决了认证管理、大文件处理等复杂问题。

Databricks Python SDK的优势:

立即学习Python免费学习笔记(深入)”;

  • 无缝认证: SDK能够自动处理与Databricks工作区的认证过程,通常通过环境变量配置文件自动发现认证凭据,无需手动管理API令牌。
  • 支持大文件: SDK的upload方法没有1MB的文件大小限制,能够高效地处理大型文件,这对于数据工程师和科学家来说至关重要。
  • 简化操作: 提供直观的API接口,如dbfs.upload()和dbfs.download(),使得文件操作代码更加简洁易读。
  • 错误处理: 内置了更健壮的错误处理机制,能够更好地管理API调用中可能出现的异常。

示例代码:使用Databricks Python SDK上传与下载文件

Pi智能演示文档
Pi智能演示文档

领先的AI PPT生成工具

下载

以下是一个使用Databricks Python SDK上传文件到DBFS,并随后下载验证的示例。

import io
import pathlib
import time

from databricks.sdk import WorkspaceClient
from databricks.sdk.service import dbfs

# 1. 初始化WorkspaceClient
# SDK会自动从环境变量(如DATABRICKS_HOST, DATABRICKS_TOKEN)或.databrickscfg文件获取认证信息。
w = WorkspaceClient()

# 2. 定义DBFS上的目标路径
# 使用时间戳确保路径的唯一性
root = pathlib.Path(f'/tmp/{time.time_ns()}')

# 3. 创建一个内存中的文件对象作为上传内容
# io.BytesIO 允许我们将字节数据当作文件来处理
file_content = b"This is some text data for testing DBFS upload."
f = io.BytesIO(file_content)

# 4. 使用SDK的dbfs.upload方法上传文件
# 第一个参数是DBFS上的目标路径,第二个参数是文件对象
print(f"Uploading file to DBFS: {root}/01")
w.dbfs.upload(f'{root}/01', f)
print("File uploaded successfully.")

# 5. 使用SDK的dbfs.download方法下载文件并验证
print(f"Downloading file from DBFS: {root}/01")
with w.dbfs.download(f'{root}/01') as downloaded_file:
    downloaded_data = downloaded_file.read()
    assert downloaded_data == file_content
    print("File downloaded and verified successfully.")
    print(f"Downloaded content: {downloaded_data.decode('utf-8')}")

# 注意:在实际应用中,可能还需要清理临时文件
# w.dbfs.delete(f'{root}/01', recursive=False)

代码解析:

  • WorkspaceClient():这是SDK的入口点,用于与Databricks工作区进行交互。
  • io.BytesIO(b"some text data"):创建一个内存中的二进制流,模拟一个文件。在实际应用中,你可以替换为读取本地文件或生成的数据流。
  • w.dbfs.upload(f'{root}/01', f):这是核心的上传操作。它接受DBFS上的目标路径和文件对象作为参数。SDK会处理文件的分块上传和认证。
  • w.dbfs.download(f'{root}/01'):用于从DBFS下载文件。它返回一个文件对象,可以使用read()方法获取内容。with语句确保文件资源被正确关闭。
  • assert downloaded_data == file_content:验证下载的内容与上传的原始内容是否一致。

3. 最佳实践与注意事项

在Databricks中进行DBFS文件操作时,遵循以下最佳实践可以提高效率和可靠性:

  • 优先使用Databricks Python SDK: 对于大多数文件操作场景,尤其是涉及大文件或需要自动化脚本的场景,SDK是比直接API调用更优的选择。它提供了更高级别的抽象,简化了开发,并增强了鲁棒性。
  • 理解API限制: 如果确实需要直接使用DBFS Put API,请务必记住1MB的文件大小限制,并确保content属性中的数据经过Base64编码。
  • 认证管理: SDK通常能自动处理认证。如果使用直接API,请确保您的API令牌安全存储并正确传递(例如,通过HTTP Authorization头)。
  • 路径规范: DBFS路径通常以/开头,例如/tmp/、/FileStore/等。确保您的路径是有效的DBFS路径。
  • 错误处理: 在编写文件操作代码时,始终包含适当的错误处理机制(如try-except块),以应对网络问题、权限不足或文件不存在等情况。
  • 资源清理: 如果上传的是临时文件,考虑在操作完成后进行清理,以避免不必要的存储占用。

总结

在Databricks中将文件上传到DBFS,可以直接使用DBFS Put API,但需注意其内容Base64编码要求和1MB的文件大小限制。对于更可靠、更高效且能处理大文件的场景,强烈推荐使用Databricks Python SDK。SDK通过提供高级抽象和自动认证管理,极大地简化了DBFS文件操作,是开发人员和数据工程师的首选工具。理解并选择合适的工具,将有助于您更高效地管理Databricks上的数据资源。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号