
1. 背景与目标
在数据分析和自动化任务中,我们经常需要从网页上获取特定信息。当目标数据以表格形式呈现时,直接通过简单的元素选择器可能无法有效获取其结构化内容。本教程的目标是演示如何从一个包含积雪深度信息的网页(例如:https://www.yr.no/nb/sn%c3%b8dybder/no-46/norge/vestland)中,准确提取特定区域的积雪深度数据,并将其整理成易于分析的pandas dataframe。
2. 初始尝试与挑战
许多初学者在尝试抓取网页数据时,可能会先尝试查找页面上所有包含特定值的通用标签,例如通过soup.find_all("span", {"class": "snow-depth__value"})来获取所有带有snow-depth__value类的span标签。这种方法虽然能获取到所有匹配的值,但存在以下问题:
- 缺乏上下文: 仅仅获取值无法知道它属于哪个区域、哪个时间点,数据是零散的。
- 结构化困难: 将这些零散的值与对应的标题或描述关联起来,并最终放入DataFrame中,需要额外的逻辑处理,效率低下且容易出错。
正确的思路是首先识别目标数据在网页上的整体结构,特别是当数据呈现为表格时。
3. 精确抓取表格数据:分步指南
我们将利用requests库获取网页内容,BeautifulSoup解析HTML,然后识别并提取表格的标题和每一行数据,最终使用Pandas构建DataFrame。
3.1 引入必要的库
首先,导入我们将用到的Python库:
import requests from bs4 import BeautifulSoup from bs4.element import ResultSet, Tag from typing import Generator, List from pandas import DataFrame
3.2 发送HTTP请求并解析HTML
使用requests.get()方法获取网页的HTML内容,然后使用BeautifulSoup对其进行解析。
# 目标网页URL url = 'https://www.yr.no/nb/sn%C3%B8dybder/NO-46/Norge/Vestland' # 发送GET请求获取网页内容 response: requests.Response = requests.get(url) html: str = response.content # 使用BeautifulSoup解析HTML soup: BeautifulSoup = BeautifulSoup(html, 'html.parser')
3.3 识别并提取表格头部(列名)
表格的列名通常位于
# 查找所有表格头部单元格
table_headers: ResultSet = soup.find_all('th', class_='fluid-table__cell--heading')
# 提取列名文本
# 注意:在BeautifulSoup中,由于'class'是Python的保留关键字,
# 在find_all/find方法中作为参数传递时需要使用'class_'。
colnames: List[str] = [th.text for th in table_headers]
print("提取到的列名:", colnames)3.4 识别并提取表格行数据
表格的每一行数据通常位于
为了高效处理数据,我们可以使用生成器表达式(Generator comprehension)来延迟计算,避免一次性加载所有数据到内存,这对于大型表格尤其有用。
# 查找所有表格数据行
table_rows: ResultSet = soup.find_all('tr', class_='fluid-table__row fluid-table__row--link')
# 使用生成器表达式提取每行中的所有单元格文本
# 每个子生成器代表一行数据,包含该行所有子元素的文本内容
# 这里的child.text会提取标签下所有子标签(如)的文本
row_data: Generator[Generator[str, None, None], None, None] = (
(child.text for child in row.children) for row in table_rows
)
# 打印前几行数据以供检查(可选)
print("\n提取到的部分行数据:")
for i, row in enumerate(row_data):
if i >= 3: # 只打印前3行
break
print(list(row)) # 将生成器转换为列表以便打印3.5 构建Pandas DataFrame
有了列名和行数据,我们就可以轻松地使用Pandas的DataFrame构造函数来创建结构化的数据表。
# 重新获取row_data,因为上一步的打印操作已经消耗了生成器
table_rows_for_df: ResultSet = soup.find_all('tr', class_='fluid-table__row fluid-table__row--link')
row_data_for_df: Generator[Generator[str, None, None], None, None] = (
(child.text for child in row.children) for row in table_rows_for_df
)
# 创建Pandas DataFrame
df: DataFrame = DataFrame(row_data_for_df, columns=colnames)
# 尝试将所有列的数据类型转换为整数,如果遇到无法转换的值则忽略(保持原类型)
df = df.astype(int, errors='ignore')
print("\n最终生成的Pandas DataFrame:")
print(df.head())4. 完整代码示例
将以上步骤整合,得到完整的代码如下:
import requests
from bs4 import BeautifulSoup
from bs4.element import ResultSet, Tag
from typing import Generator, List
from pandas import DataFrame
def scrape_snow_depth_data(url: str) -> DataFrame:
"""
从指定的URL抓取积雪深度表格数据并返回Pandas DataFrame。
Args:
url (str): 目标网页的URL。
Returns:
DataFrame: 包含积雪深度数据的Pandas DataFrame。
"""
try:
response: requests.Response = requests.get(url)
response.raise_for_status() # 检查HTTP请求是否成功
except requests.exceptions.RequestException as e:
print(f"请求网页失败: {e}")
return DataFrame()
html: str = response.content
soup: BeautifulSoup = BeautifulSoup(html, 'html.parser')
# 提取表格头部(列名)
table_headers: ResultSet = soup.find_all('th', class_='fluid-table__cell--heading')
colnames: List[str] = [th.text.strip() for th in table_headers] # 使用.strip()清除空白符
# 提取表格行数据
table_rows: ResultSet = soup.find_all('tr', class_='fluid-table__row fluid-table__row--link')
# 使用生成器表达式提取每行中的所有单元格文本
# 注意:这里需要确保每个row.children都能正确解析出所需的数据,
# 有时需要更精确的选择器如row.find_all('td')
row_data: Generator[List[str], None, None] = (
[child.text.strip() for child in row.children if isinstance(child, Tag)]
for row in table_rows
)
# 过滤掉空行或不完整的行,确保每行的数据量与列名数量一致
filtered_row_data = [row for row in row_data if len(row) == len(colnames)]
# 创建Pandas DataFrame
df: DataFrame = DataFrame(filtered_row_data, columns=colnames)
# 尝试将所有列的数据类型转换为整数,如果遇到无法转换的值则忽略
# 可能会有非数字列,所以使用errors='ignore'
for col in df.columns:
try:
df[col] = pd.to_numeric(df[col], errors='ignore')
except:
pass # 无法转换为数字的列保持原样
return df
if __name__ == "__main__":
import pandas as pd # 在主执行块中导入pd,避免全局污染
target_url = 'https://www.yr.no/nb/sn%C3%B8dybder/NO-46/Norge/Vestland'
snow_depth_df = scrape_snow_depth_data(target_url)
if not snow_depth_df.empty:
print("成功获取并处理积雪深度数据:")
print(snow_depth_df.head())
print("\nDataFrame信息:")
snow_depth_df.info()
else:
print("未能获取到数据。")
5. 注意事项与最佳实践
-
网站结构变化: 网页的HTML结构可能会随时改变。如果代码突然失效,很可能是因为网站更新了其HTML标签、类名或结构。这时需要重新检查目标网页的HTML,并调整选择器。
-
robots.txt: 在进行网页抓取前,务必检查网站的robots.txt文件(例如:https://www.yr.no/robots.txt),了解网站的抓取策略和允许抓取的范围。遵守这些规则是道德和法律要求。
-
请求频率: 避免在短时间内发送大量请求,这可能导致IP被封禁或对网站服务器造成不必要的负担。可以使用time.sleep()在请求之间添加延迟。
-
错误处理: 在实际应用中,应添加更健壮的错误处理机制,例如处理网络连接问题、页面不存在(404错误)、解析失败等情况。
-
数据清洗: 抓取到的数据可能包含额外的空白字符、特殊符号或非预期的格式。使用.strip()、replace()等字符串方法进行进一步清洗是常见的步骤。
-
astype(int, errors='ignore'): 这个方法在尝试转换数据类型时非常有用,它会忽略那些无法转换为指定类型的值,保持其原始类型,从而避免程序崩溃。
6. 总结
通过本教程,我们学习了如何利用requests、BeautifulSoup和Pandas库,从复杂的网页中高效且准确地提取结构化表格数据。关键在于深入理解目标网页的HTML结构,特别是表格(
、、
、)的组织方式。掌握这些技术,将使您能够自动化地获取并分析各种在线数据源,极大地提升数据处理能力。
相关文章
python如何输入回车
python abs函数怎么用
Python编写fun函数_从零开始编写一个fun函数的步骤
Django 外部脚本中正确配置 ORM 并导入自定义 App 模块的完整指南
详解Python内建函数map()和reduce()
相关标签:
本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门AI工具
更多
相关专题
更多
python开发工具
php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。
742
2023.06.15
python能做什么
python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。
756
2023.07.25
format在python中的用法
Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。
617
2023.07.31
python环境变量的配置
Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。
547
2023.08.04
python eval
eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。
577
2023.08.04
scratch和python区别
scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。
705
2023.08.11
热门下载
更多
相关下载
更多
精品课程
更多
相关推荐 /
热门推荐 /
最新课程
Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号




