0

0

处理不同形状批次的损失计算:加权平均损失方法

DDD

DDD

发布时间:2025-09-09 20:35:00

|

394人浏览过

|

来源于php中文网

原创

处理不同形状批次的损失计算:加权平均损失方法

本文介绍了一种处理不同形状批次损失的加权平均方法。当训练数据集中批次的样本数量不一致时,直接平均损失会导致偏差。通过计算每个批次的加权平均损失,并根据批次大小进行加权,可以更准确地反映整体训练效果。以下将详细介绍该方法及其实现。

问题背景

深度学习模型训练中,我们通常将数据集分成多个批次进行训练。然而,在某些情况下,例如处理变长序列数据时,每个批次的样本可能具有不同的形状。如果直接计算所有批次损失的平均值,会导致损失计算不准确,因为样本数量较少的批次对最终损失的影响更大。

解决方案:加权平均损失

为了解决上述问题,我们可以采用加权平均损失的方法。该方法的核心思想是:首先计算每个批次的平均损失,然后根据每个批次的样本数量对这些平均损失进行加权,最后计算加权平均损失作为最终的损失值。

具体步骤如下:

  1. 计算每个批次的平均损失: 对于每个批次,计算其所有样本损失的平均值。
  2. 计算每个批次的权重: 每个批次的权重等于该批次的样本数量除以总样本数量。
  3. 计算加权平均损失: 将每个批次的平均损失乘以其对应的权重,然后将所有加权后的损失相加,得到最终的加权平均损失。

代码示例

以下是一个使用 PyTorch 实现加权平均损失的示例代码:

Dreamlike.art
Dreamlike.art

内置5种模型的AI图像生成器

下载
import torch

# 模拟不同批次的损失
losses_perbatch = [torch.randn(8, 1), torch.randn(4, 1), torch.randn(2, 1)]

# 计算总样本数量
total_samples = sum([len(batch) for batch in losses_perbatch])

# 计算每个批次的加权平均损失
weighted_mean_perbatch = torch.tensor([batch.sum() for batch in losses_perbatch]) / total_samples

# 等价于:
# weighted_mean_perbatch = torch.tensor([batch.mean() * len(batch) for batch in losses_perbatch]) / total_samples

# 计算最终的加权平均损失
final_weighted_loss = sum(weighted_mean_perbatch)

print(f"最终加权平均损失: {final_weighted_loss}")

代码解释:

  • losses_perbatch:一个包含多个批次损失的列表。每个批次损失是一个 PyTorch 张量,其形状表示该批次的样本数量。
  • total_samples:总样本数量,通过计算所有批次的样本数量之和得到。
  • weighted_mean_perbatch:一个包含每个批次加权平均损失的张量。每个批次的加权平均损失等于该批次所有样本损失的总和除以总样本数量。
  • final_weighted_loss:最终的加权平均损失,通过计算所有批次加权平均损失的总和得到。

应用到训练函数

将上述加权平均损失计算方法应用到原始的训练函数中,需要修改损失计算部分:

def training():
    model.train()

    train_mae = []

    progress = tqdm(train_dataloader, desc='Training')
    for batch_index, batch in enumerate(progress):
        x = batch['x'].to(device)
        x_lengths = batch['x_lengths'].to(device)
        y = batch['y'].to(device)
        y_type = batch['y_type'].to(device)
        y_valid_indices = batch['y_valid_indices'].to(device)

        # Zero Gradients
        optimizer.zero_grad()

        # Forward pass
        y_first, y_second = model(x)

        losses = []
        batch_sizes = []  # 记录每个batch的有效样本数量

        for j in range(len(x_lengths)):
            x_length = x_lengths[j].item()

            if y_type[j].item() == 0:
                predicted = y_first[j]
            else:
                predicted = y_second[j]

            actual = y[j]

            valid_mask = torch.zeros_like(predicted, dtype=torch.bool)
            valid_mask[:x_length] = 1

            # Padding of -1 is removed from y
            indices_mask = y[j].ne(-1)
            valid_indices = y[j][indices_mask]

            valid_predicted = predicted[valid_mask]
            valid_actual = actual[valid_mask]

            loss = mae_fn(valid_predicted, valid_actual, valid_indices)

            losses.append(loss.sum()) # 存储loss的总和
            batch_sizes.append(len(valid_indices)) # 存储有效样本的数量

        # Backward pass and update
        total_samples_in_batch = sum(batch_sizes)
        weighted_losses = [loss / total_samples_in_batch * batch_size for loss, batch_size in zip(losses, batch_sizes)]
        loss = sum(weighted_losses)
        loss.backward()

        optimizer.step()

        train_mae.append(loss.detach().cpu().numpy())

        progress.set_description(
            f"mae: {loss.detach().cpu().numpy():.4f}"
        )

    # Return the average MAEs for y type
    return (
        np.mean(train_mae)
    )

关键修改点:

  • 在循环中,我们计算每个样本的损失,并使用loss.sum()存储每个批次损失的总和。
  • 同时,使用 batch_sizes 列表记录每个批次中有效样本的数量。
  • 在反向传播之前,计算 total_samples_in_batch (总样本数),并计算加权损失 weighted_losses。
  • 最终的 loss 是所有加权损失的总和。

注意事项

  • 确保在计算加权平均损失时,使用的样本数量是每个批次的有效样本数量,而不是批次的总样本数量。例如,如果批次中包含填充值,则应该排除这些填充值。
  • 加权平均损失方法可以应用于各种损失函数,例如均方误差 (MSE)、交叉熵损失等。
  • 在某些情况下,可能需要对权重进行调整,以获得更好的训练效果。例如,可以根据每个批次的损失大小来调整权重。

总结

加权平均损失是一种有效的处理不同形状批次损失的方法。通过根据批次大小对损失进行加权,可以更准确地反映整体训练效果,并避免因样本数量差异造成的偏差。在实际应用中,可以根据具体情况对权重进行调整,以获得更好的训练效果。

相关专题

更多
pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

426

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

5

2025.12.22

苹果官网入口直接访问
苹果官网入口直接访问

苹果官网直接访问入口是https://www.apple.com/cn/,该页面具备0.8秒首屏渲染、HTTP/3与Brotli加速、WebP+AVIF双格式图片、免登录浏览全参数等特性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

115

2025.12.24

拼豆图纸在线生成器
拼豆图纸在线生成器

拼豆图纸生成器有PixelBeads在线版、BeadGen和“豆图快转”;推荐通过pixelbeads.online或搜索“beadgen free online”直达官网,避开需注册的诱导页面。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

84

2025.12.24

俄罗斯搜索引擎yandex官方入口地址(最新版)
俄罗斯搜索引擎yandex官方入口地址(最新版)

Yandex官方入口网址是https://yandex.com。用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

553

2025.12.24

JavaScript ES6新特性
JavaScript ES6新特性

ES6是JavaScript的根本性升级,引入let/const实现块级作用域、箭头函数解决this绑定问题、解构赋值与模板字符串简化数据处理、对象简写与模块化提升代码可读性与组织性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

155

2025.12.24

php框架基础知识汇总
php框架基础知识汇总

php框架是构建web应用程序的架构,提供工具和功能,以简化开发过程。选择合适的框架取决于项目需求和技能水平。实战案例展示了使用laravel构建博客的步骤,包括安装、创建模型、定义路由、编写控制器和呈现视图。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

20

2025.12.24

Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

47

2025.12.24

任务管理器教程
任务管理器教程

本专题整合了任务管理器相关教程,阅读下面的文章了解更多详细操作。

7

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 37.6万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号