0

0

使用 Pandas 将多行多列数据合并为单行

碧海醫心

碧海醫心

发布时间:2025-09-03 20:14:12

|

641人浏览过

|

来源于php中文网

原创

使用 pandas 将多行多列数据合并为单行

本文旨在介绍如何使用 Pandas 库将 DataFrame 中具有对应关系的多个 Position/Name 列合并为单行,并根据 Position 列的值筛选出有效数据。通过 stack、where、dropna 等 Pandas 函数的组合运用,可以高效地实现数据转换和清洗,最终得到目标格式的数据。

数据准备

首先,我们需要创建一个 Pandas DataFrame,模拟原始数据。以下是一个示例:

import pandas as pd

data = {'Position A': [-1, 3, -1, -1],
        'Name A': ['tortise', 'sprite', 'nope', 'nope'],
        'Position B': [-1, 2, -1, -1],
        'Name B': ['monkey', 'coffee', 'nope', 'nope'],
        'Position C': [2, -1, -1, -1],
        'Name C': ['coca cola', 'bird', 'fish', 'nope'],
        'Position D': [-1, -1, 5, -1],
        'Name D': ['slug', 'monkey', 'root beer', 'nope'],
        'Position E': [-1, -1, 1, -1],
        'Name E': ['rooster', 'ostrich', 'tea', 'nope']}

df = pd.DataFrame(data)

print(df)

这段代码创建了一个名为 df 的 DataFrame,包含了 Position 和 Name 列,模拟了原始数据。

数据转换

核心思路是使用 stack 函数将 DataFrame 转换为 Series,然后根据 Position 列的值进行筛选,最后再将 Series 转换回 DataFrame。

new_df = (df.filter(like='Name').stack()
          .where(df.filter(like='Position').stack().ne(-1).values)
          .dropna().droplevel(0).sort_index().to_frame().T
)

print(new_df)

这段代码主要做了以下几件事:

风易在线销售系统
风易在线销售系统

《风易在线销售系统》是一套为企业电子商务项目量身设计打造的在线商业销售系统,本系统将商品管理、客户管理、订单管理、信息管理、界面管理、系统管理等功能无缝融合,并且提供简单易用的后台管理平台,独家首创的模版内核系统,以及诸多实用的辅助模块。为客户提供了一个低成本,高效率,专业化的在线销售建设方案。 【新增】新增后台选择每页显示数据数量。 【新增】新增一个单客服模式功能。 【新增】新增根据一级分类显示

下载
  1. df.filter(like='Name'): 筛选出包含 'Name' 的列。
  2. .stack(): 将筛选出的列堆叠成一个 Series。
  3. df.filter(like='Position').stack().ne(-1).values: 筛选出包含 'Position' 的列,堆叠成 Series,并判断值是否不等于 -1,将结果转换为 Numpy 数组。
  4. .where(...): 根据 Position 列的条件,保留 Name 列中满足条件的值,否则设置为 NaN。
  5. .dropna(): 移除 NaN 值。
  6. .droplevel(0): 移除最外层的索引。
  7. .sort_index(): 对索引进行排序。
  8. .to_frame().T: 将 Series 转换为 DataFrame,并转置。

结果展示

运行上述代码后,将会得到以下结果:

    Name A   Name B      Name C     Name D  Name E
0   sprite   coffee   coca cola  root beer     tea

这正是我们期望的结果,将多行多列的数据合并为了单行,并根据 Position 列的值进行了筛选。

注意事项

  • 确保 Position 和 Name 列的对应关系正确。
  • 可以根据实际情况调整筛选条件,例如,将 -1 替换为其他值。
  • 如果数据量很大,可以考虑使用更高效的 Pandas 函数,例如 apply。

总结

本文介绍了如何使用 Pandas 将 DataFrame 中具有对应关系的多个 Position/Name 列合并为单行,并根据 Position 列的值筛选出有效数据。通过 stack、where、dropna 等 Pandas 函数的组合运用,可以高效地实现数据转换和清洗。这种方法可以应用于各种需要将多行多列数据合并为单行的场景,例如,数据清洗、数据转换、数据分析等。掌握这种方法可以帮助你更高效地处理数据,提高工作效率。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

371

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

563

2023.08.10

CSS position定位有几种方式
CSS position定位有几种方式

有4种,分别是静态定位、相对定位、绝对定位和固定定位。更多关于CSS position定位有几种方式的内容,可以访问下面的文章。

80

2023.11.23

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

455

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

264

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

499

2024.03.13

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 40.2万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号