0

0

使用 Pandas 和 NumPy 在分组内将每行数据添加到每行

花韻仙語

花韻仙語

发布时间:2025-08-24 20:34:01

|

523人浏览过

|

来源于php中文网

原创

使用 pandas 和 numpy 在分组内将每行数据添加到每行

本文介绍了如何使用 Pandas 和 NumPy 在数据分析中,针对分组数据,将每个组内的每一行数据循环添加到该组的每一行,从而实现数据的扩展和特征的交叉组合。通过结合 NumPy 的高效数组操作和 Pandas 的灵活数据处理能力,可以简洁高效地完成此任务。

在数据分析中,有时需要将同一组内的不同行数据进行组合,以生成新的特征或进行更深入的分析。例如,在赛马数据中,可能需要将每匹马的特征与其他马的特征进行组合,以评估其相对竞争力。本文将介绍如何使用 Pandas 和 NumPy 实现这一目标。

解决方案

以下代码展示了如何使用 Pandas 的 groupby 方法和 NumPy 的数组操作来实现将分组内的每行数据添加到每行的功能。

Red Panda AI
Red Panda AI

AI文本生成图像

下载
import pandas as pd
import numpy as np

def roll(g):
    a = g.to_numpy()
    x = np.arange(len(a))
    return pd.DataFrame(a[((x[:,None] + x)%len(a)).ravel()].reshape(len(a), -1),
                        index=g.index,
                        columns=[f'{c}_{i+1}' for i in x for c in g.columns])

# 示例数据
data_orig = {
    'meetingId': [178515] * 6,
    'raceId': [879507] * 6,
    'horseId': [90001, 90002, 90003, 90004, 90005, 90006],
    'position': [1, 2, 3, 4, 5, 6],
    'weight': [51, 52, 53, 54, 55, 56],
}

data_orig_df = pd.DataFrame(data_orig)

cols = ['meetingId', 'raceId']

out = (data_orig_df.groupby(cols)
       .apply(lambda g: roll(g.drop(columns=cols)))
       .reset_index(cols)
       )

print(out)

代码解释

  1. 导入必要的库:首先,导入 Pandas 和 NumPy 库,分别用于数据处理和数组操作。
  2. 定义 roll 函数:该函数接收一个 Pandas DataFrame 作为输入,并使用 NumPy 的数组操作来实现数据的循环添加。
    • g.to_numpy():将 DataFrame 转换为 NumPy 数组。
    • np.arange(len(a)):创建一个从 0 到数组长度的序列。
    • ((x[:,None] + x)%len(a)).ravel():使用 NumPy 的广播机制和取模运算,生成一个索引数组,用于循环访问数组中的元素。
    • a[((x[:,None] + x)%len(a)).ravel()].reshape(len(a), -1):使用索引数组访问数组中的元素,并将结果重塑为 DataFrame 的形状。
    • pd.DataFrame(...):将 NumPy 数组转换为 Pandas DataFrame,并设置列名。
  3. 定义分组列:cols = ['meetingId', 'raceId'] 定义了用于分组的列名。
  4. 分组并应用 roll 函数
    • data_orig_df.groupby(cols):按照指定的分组列对 DataFrame 进行分组。
    • .apply(lambda g: roll(g.drop(columns=cols))):对每个分组应用 roll 函数,并删除分组列。
    • .reset_index(cols):重置索引,将分组列恢复为普通列。

输出结果

上述代码将生成一个新的 DataFrame,其中包含了原始数据以及每个组内其他行的数据。例如,对于 horseId 为 90001 的行,新 DataFrame 中将包含 horseId 为 90002、90003、90004、90005 和 90006 的数据,并以 horseId_2、horseId_3 等列名进行区分。

注意事项

  • 此方法适用于数据量较小的分组。对于数据量较大的分组,可能会导致内存占用过高。
  • 可以根据实际需求修改 roll 函数,以实现更复杂的数据组合逻辑。
  • 在实际应用中,需要根据数据的具体含义选择合适的分组列和数据组合方式。

总结

本文介绍了如何使用 Pandas 和 NumPy 在分组内将每行数据添加到每行。通过结合 NumPy 的高效数组操作和 Pandas 的灵活数据处理能力,可以简洁高效地完成此任务。在实际应用中,可以根据具体需求进行修改和扩展,以满足不同的数据分析需求。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

lambda表达式
lambda表达式

Lambda表达式是一种匿名函数的简洁表示方式,它可以在需要函数作为参数的地方使用,并提供了一种更简洁、更灵活的编码方式,其语法为“lambda 参数列表: 表达式”,参数列表是函数的参数,可以包含一个或多个参数,用逗号分隔,表达式是函数的执行体,用于定义函数的具体操作。本专题为大家提供lambda表达式相关的文章、下载、课程内容,供大家免费下载体验。

202

2023.09.15

python lambda函数
python lambda函数

本专题整合了python lambda函数用法详解,阅读专题下面的文章了解更多详细内容。

187

2025.11.08

lambda表达式
lambda表达式

Lambda表达式是一种匿名函数的简洁表示方式,它可以在需要函数作为参数的地方使用,并提供了一种更简洁、更灵活的编码方式,其语法为“lambda 参数列表: 表达式”,参数列表是函数的参数,可以包含一个或多个参数,用逗号分隔,表达式是函数的执行体,用于定义函数的具体操作。本专题为大家提供lambda表达式相关的文章、下载、课程内容,供大家免费下载体验。

202

2023.09.15

python lambda函数
python lambda函数

本专题整合了python lambda函数用法详解,阅读专题下面的文章了解更多详细内容。

187

2025.11.08

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

450

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

264

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

718

2023.10.16

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

2

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Git 教程
Git 教程

共21课时 | 2.3万人学习

麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号