0

0

获取 Pandas DataFrame 列中的单个标量值

心靈之曲

心靈之曲

发布时间:2025-08-15 18:38:01

|

651人浏览过

|

来源于php中文网

原创

获取 Pandas DataFrame 列中的单个标量值

本文旨在介绍在 Pandas DataFrame 中,当特定列的所有行都包含相同值时,如何高效地提取该列的单个标量值。我们将探讨几种方法,重点关注性能,并提供代码示例以帮助您选择最适合您场景的方法。

在 pandas 中,从 dataframe 获取特定列的标量值有多种方法。当该列的所有值都相同时,获取第一个值通常是最有效的方法。以下介绍几种常用的方法,并分析其适用场景。

1. 使用 iloc[0]

这是最直接且通常最快的方法。它通过索引位置 0 直接访问 DataFrame 中的第一个值。

import pandas as pd

df = pd.DataFrame(
    {
        "id": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "contents": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "store_id": [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
    }
)

store_id = df['store_id'].iloc[0]
print(store_id)

优点:

  • 速度快,效率高。
  • 代码简洁易懂。

缺点:

  • 依赖于 DataFrame 索引从 0 开始。如果 DataFrame 索引不是从 0 开始,则需要进行调整。

2. 使用 loc[df.first_valid_index(), 'store_id']

此方法首先使用 df.first_valid_index() 找到 DataFrame 的第一个有效索引,然后使用 .loc 基于标签访问该索引和列 store_id 对应的值。

import pandas as pd

df = pd.DataFrame(
    {
        "id": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "contents": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "store_id": [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
    }
)

store_id = df.loc[df.first_valid_index(), 'store_id']
print(store_id)

优点:

  • 即使 DataFrame 的索引不是从 0 开始,也能正确工作。
  • 更健壮,可以处理 DataFrame 中存在缺失值的情况。

缺点:

  • 相对于 iloc[0] 而言,性能稍差。

3. 使用 iloc[0, df.columns.get_loc('store_id')]

Napkin AI
Napkin AI

Napkin AI 可以将您的文本转换为图表、流程图、信息图、思维导图视觉效果,以便快速有效地分享您的想法。

下载

这种方法使用 df.columns.get_loc('store_id') 获取列 store_id 的索引位置,然后使用 iloc 通过索引位置访问 DataFrame 中的值。

import pandas as pd

df = pd.DataFrame(
    {
        "id": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "contents": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "store_id": [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
    }
)

store_id = df.iloc[0, df.columns.get_loc('store_id')]
print(store_id)

优点:

  • 确保即使列的顺序发生变化,也能正确获取值。

缺点:

  • 代码相对复杂。
  • 性能略低于直接使用 iloc[0]。

4. 避免使用 max() 或 unique()

虽然使用 df["store_id"].max() 或 df["store_id"].unique()[0] 也能达到目的,但这些方法涉及对整个列进行计算,效率较低,尤其是在处理大型 DataFrame 时。

总结

在从 Pandas DataFrame 的列中获取单个标量值时,如果该列的所有值都相同,建议使用 df['store_id'].iloc[0]。它简单、高效,并且通常是最快的选择。 如果DataFrame的索引不是从0开始,或者需要处理缺失值的情况,df.loc[df.first_valid_index(), 'store_id'] 是一个更健壮的选择。

选择哪种方法取决于具体的应用场景和性能要求。在处理大型 DataFrame 时,性能差异可能会更加明显,因此建议根据实际情况进行选择。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

42

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

35

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

41

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

200

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

9

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

8

2025.12.31

阻止电脑自动安装软件教程
阻止电脑自动安装软件教程

本专题整合了阻止电脑自动安装软件教程,阅读专题下面的文章了解更多详细教程。

3

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号