0

0

Pandas/NumPy 中逻辑与运算处理 NaN 值的技巧

碧海醫心

碧海醫心

发布时间:2025-07-14 18:52:40

|

626人浏览过

|

来源于php中文网

原创

pandas/numpy 中逻辑与运算处理 nan 值的技巧

在 Pandas 和 NumPy 中进行逻辑运算时,NaN 值的处理可能会带来一些困扰。默认情况下,逻辑与运算 (&) 遇到 NaN 值会返回 False。然而,在某些场景下,我们希望 NaN 值的处理方式更加灵活,例如:True & NaN == True,False & False == False,NaN & NaN == NaN。本文将介绍两种实现这种逻辑的方法,并分析它们在不同数据情况下的性能表现。

使用 mask 方法

mask 方法可以根据条件替换 Series 或 DataFrame 中的值。我们可以利用 mask 方法,先进行逻辑与运算,然后将所有 NaN 值都为 True 的行替换为 NaN。

import pandas as pd
from itertools import product

# 创建包含 True, False, NaN 的 DataFrame
a = pd.DataFrame((product([True, False, None], [True, False, None])))
print(a)

# 使用 mask 方法实现自定义逻辑与
result = a.all(1).mask(a.isna().all(1))
print(result)

这段代码首先创建了一个包含 True、False 和 NaN 值的 DataFrame。然后,a.all(1) 计算每一行的逻辑与结果(忽略 NaN 值,视为 True)。最后,mask(a.isna().all(1)) 将所有行中 NaN 值都为 True 的行,用 NaN 替换掉之前计算的逻辑与结果。

使用 stack 方法

stack 方法可以将 DataFrame 转换为 Series,将列索引转换为行索引。我们可以利用 stack 方法,先将 DataFrame 转换为 Series,然后进行分组聚合运算,最后再将结果重新索引到原始 DataFrame 的索引。

import pandas as pd
from itertools import product

# 创建包含 True, False, NaN 的 DataFrame
a = pd.DataFrame((product([True, False, None], [True, False, None])))
print(a)

# 使用 stack 方法实现自定义逻辑与
result = a.stack().groupby(level=0).all().reindex(a.index)
print(result)

这段代码首先创建了一个包含 True、False 和 NaN 值的 DataFrame。然后,a.stack() 将 DataFrame 转换为 Series,并丢弃 NaN 值。接着,groupby(level=0).all() 对每一行进行逻辑与运算。最后,reindex(a.index) 将结果重新索引到原始 DataFrame 的索引,从而在 NaN 值的位置填充 NaN。

Timely
Timely

一款AI时间跟踪管理工具!

下载

性能分析与选择

两种方法在性能上有所差异,取决于数据中 NaN 值的分布情况。

  • mask 方法: 适用于 NaN 值较少的情况。因为它需要先进行逻辑与运算,然后再根据 NaN 值进行替换,所以当 NaN 值较多时,替换操作的开销会比较大。
  • stack 方法: 适用于 NaN 值较多的情况。因为它会先丢弃 NaN 值,然后再进行逻辑与运算,所以当 NaN 值较多时,可以避免大量的逻辑与运算,从而提高性能。

以下是一个性能测试的示例:

import pandas as pd
import timeit
from itertools import product

# 创建包含 True, False, NaN 的 DataFrame
a = pd.DataFrame((product([True, False, None], [True, False, None])))

# 创建两个 DataFrame,一个 NaN 值较少,一个 NaN 值较多
b = a.sample(int(1e5), weights=[1,1,1,1,1,1,1,1,0.01], ignore_index=True, replace=True)
c = a.sample(int(1e5), weights=[1,1,1,1,1,1,1,1,80], ignore_index=True, replace=True)

print(f"b 中 NaN 行数:{b.isna().all(axis='columns').sum()}")
print(f"c 中 NaN 行数:{c.isna().all(axis='columns').sum()}")

# 测试 mask 方法的性能
time_mask_b = timeit.timeit(lambda: b.all(1).mask(b.isna().all(1)), number=100)
time_mask_c = timeit.timeit(lambda: c.all(1).mask(c.isna().all(1)), number=100)

# 测试 stack 方法的性能
time_stack_b = timeit.timeit(lambda: b.stack().groupby(level=0).all().reindex(b.index), number=100)
time_stack_c = timeit.timeit(lambda: c.stack().groupby(level=0).all().reindex(c.index), number=100)

print(f"b (少量 NaN) mask 方法耗时:{time_mask_b:.2f}s")
print(f"b (少量 NaN) stack 方法耗时:{time_stack_b:.2f}s")
print(f"c (大量 NaN) mask 方法耗时:{time_mask_c:.2f}s")
print(f"c (大量 NaN) stack 方法耗时:{time_stack_c:.2f}s")

测试结果表明,当 NaN 值较少时,mask 方法的性能更好;当 NaN 值较多时,stack 方法的性能更好。因此,在实际应用中,需要根据数据的特点选择合适的方法。

总结

本文介绍了在 Pandas 或 NumPy 中,如何使逻辑与运算符 (&) 根据另一侧的值来处理 NaN 值。通过 mask 和 stack 两种方法,可以灵活地处理包含 NaN 值的布尔 Series 或 DataFrame 的逻辑与运算。在选择方法时,需要考虑数据中 NaN 值的分布情况,选择更高效的方案。希望本文能够帮助读者更好地处理 Pandas 和 NumPy 中的 NaN 值。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

49

2025.12.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1436

2023.10.24

Go语言中的运算符有哪些
Go语言中的运算符有哪些

Go语言中的运算符有:1、加法运算符;2、减法运算符;3、乘法运算符;4、除法运算符;5、取余运算符;6、比较运算符;7、位运算符;8、按位与运算符;9、按位或运算符;10、按位异或运算符等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

226

2024.02.23

php三元运算符用法
php三元运算符用法

本专题整合了php三元运算符相关教程,阅读专题下面的文章了解更多详细内容。

85

2025.10.17

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

138

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

80

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

82

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

61

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

458

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号