0

0

混合相似度算法

DDD

DDD

发布时间:2025-01-21 23:24:23

|

708人浏览过

|

来源于php中文网

原创

混合相似度算法

混合相似度算法详解

本文深入探讨基于定制神经网络的混合相似度 (hybridsimilarity) 算法,该算法用于衡量两段文本间的相似性。此混合模型巧妙地融合了词汇、语音、语义和句法相似性,从而得到一个更全面的相似度评分。

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # 多维度特征提取
        features = {}

        # 词汇相似度
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # 语音相似度
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # 语义嵌入 (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # 句法相似度 (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # 注意力机制
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0),
            emb2.unsqueeze(0).unsqueeze(0),
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def calculate_similarity(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)

核心组件

hybridsimilarity 模型整合了以下库和技术:

  • SentenceTransformer: 用于生成语义嵌入的预训练Transformer模型。
  • Levenshtein ratio: 计算词汇相似度。
  • Metaphone: 用于语音相似性分析。
  • TF-IDF 和 TruncatedSVD: 通过潜在语义分析 (LSA) 实现句法相似性。
  • PyTorch: 用于构建包含注意力机制和全连接层的自定义神经网络。

步骤详解

1. 模型初始化

HybridSimilarity 类继承自 nn.Module,并初始化:

  • 基于 BERT 的句子嵌入模型 (all-MiniLM-L6-v2)。
  • 用于文本向量化的 TF-IDF 向量化器。
  • 多头注意力机制,用于捕捉文本对间的相互依赖关系。
  • 全连接神经网络,用于聚合特征并生成最终的相似度得分。
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
2. 特征提取

_extract_features 方法计算多种相似性特征:

  • 词汇相似度:

    • 编辑距离 (Levenshtein ratio): 衡量将一个文本转换为另一个文本所需的字符级编辑次数。
    • Jaccard 指标: 比较两个文本中唯一词集的重叠程度。
  • 语音相似度:

    • 元音素编码 (Metaphone): 检查两个文本的语音表示是否一致。
  • 语义相似度:

    起航点卡销售系统
    起航点卡销售系统

    欢迎使用“起航点卡销售系统”销售程序:一、系统优势 1、售卡系统采取了会员与非会员相结合的销售方法,客户无需注册即可购卡,亦可注册会员购卡。 2、购卡速度快,整个购卡或过程只需二步即可取卡,让客户感受超快的取卡方式! 3、批量加卡功能。 4、取卡方式:网上支付,即时取卡 ,30秒可完成交易。 5、加密方式:MD5 32位不可倒推加密 6、防止跨站

    下载
    • 使用 BERT 生成句子嵌入,并计算其余弦相似度。
  • 句法相似度:

    • 使用 TF-IDF 向量化文本,并通过 TruncatedSVD 应用潜在语义分析 (LSA)。
  • 注意力机制:

    • 将多头注意力机制应用于嵌入,并使用平均注意力分数作为特征。
3. 神经网络聚合

提取的特征被连接起来,并通过全连接神经网络进行处理。网络预测 0 到 1 之间的相似度分数。

4. 用法示例

calculate_similarity 函数初始化模型并计算两个输入文本间的相似度。

text_a = "The quick brown fox jumps over the lazy dog"
text_b = "A fast brown fox leaps over a sleepy hound"

print(f"Similarity coefficient: {calculate_similarity(text_a, text_b):.4f}")

该函数调用 HybridSimilarity 模型并输出一个介于 0(完全不相似)和 1(完全相同)之间的浮点数,表示相似度得分。

总结

hybridsimilarity 算法是一种强大的方法,它将文本相似性的多个维度整合到一个统一的模型中。通过结合词汇、语音、语义和句法特征,该混合方法能够进行细致而全面的相似性分析,使其适用于重复检测、文本聚类和推荐系统等多种任务。

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

400

2023.08.14

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

431

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

19

2025.12.22

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

34

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

14

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

34

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

18

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

12

2026.01.13

PHP缓存策略教程大全
PHP缓存策略教程大全

本专题整合了PHP缓存相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号