0

0

PyTorch 中的 CocoCaptions (3)

花韻仙語

花韻仙語

发布时间:2025-01-09 18:43:45

|

581人浏览过

|

来源于dev.to

转载

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了cococaptions()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
  • 我的帖子解释了cococaptions()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
  • 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
  • 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
  • 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
  • 我的帖子解释了 ms coco。

cococaptions() 可以使用 ms coco 数据集,如下所示。 *这是针对带有 stuff_train2017.json 的 train2017、带有 stuff_val2017.json 的 val2017、带有 stuff_train2017.json 的 stuff_train2017_pixelmaps、带有 stuff_val2017.json 的 stuff_val2017_pixelmaps、带有 panoptic_train2017.json 的 panoptic_train2017、带有 panoptic_train2017.json 的 panoptic_val2017 panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json:

NT80 购物系统
NT80 购物系统

功能说明:1 会员可申请开店功能2 购买在线扣除金额3 冲值卡自动生成4 支持2级分类5 数据库压缩和备份6 会员分5个级别7 商品带讨论8 自带融合论坛,可关闭打开9 密码找回功能10 新闻``滚动新闻``帮助中心11 后台设置前台会员的上传权限12 可关闭/打开商店13 会员自助发布商品功能14 用户问题咨询管理

下载
from torchvision.datasets import CocoCaptions

stf_train2017_data = CocoCaptions(
    root="data/coco/imgs/train2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)

stf_val2017_data = CocoCaptions(
    root="data/coco/imgs/val2017",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)

len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)

pms_stf_train2017_data = CocoCaptions(
    root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
    annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)

pms_stf_val2017_data = CocoCaptions(
    root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
    annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)

len(pms_stf_train2017_data), len(pms_stf_val2017_data)
# (118287, 5000)

# pan_train2017_data = CocoCaptions(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error

# pan_val2017_data = CocoCaptions(
#     root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
#     annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error

unlabeled2017_data = CocoCaptions(
    root="data/coco/imgs/unlabeled2017",
    annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)

len(unlabeled2017_data)
# 123403

stf_train2017_data[2] # Error

stf_train2017_data[47] # Error

stf_train2017_data[64] # Error

stf_val2017_data[2] # Error

stf_val2017_data[47] # Error

stf_val2017_data[64] # Error

pms_stf_train2017_data[2] # Error

pms_stf_train2017_data[47] # Error

pms_stf_train2017_data[64] # Error

pms_stf_val2017_data[2] # Error

pms_stf_val2017_data[47] # Error

pms_stf_val2017_data[64] # Error

unlabeled2017_data[2]
# (, [])

unlabeled2017_data[47]
# (, [])

unlabeled2017_data[64]
# (, [])

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    for i, axis in zip(ims, axes.ravel()):
        if not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (2, 47, 64)

show_images(data=unlabeled2017_data, ims=ims,
            main_title="unlabeled2017_data")

image description

相关专题

更多
json数据格式
json数据格式

JSON是一种轻量级的数据交换格式。本专题为大家带来json数据格式相关文章,帮助大家解决问题。

403

2023.08.07

json是什么
json是什么

JSON是一种轻量级的数据交换格式,具有简洁、易读、跨平台和语言的特点,JSON数据是通过键值对的方式进行组织,其中键是字符串,值可以是字符串、数值、布尔值、数组、对象或者null,在Web开发、数据交换和配置文件等方面得到广泛应用。本专题为大家提供json相关的文章、下载、课程内容,供大家免费下载体验。

528

2023.08.23

jquery怎么操作json
jquery怎么操作json

操作的方法有:1、“$.parseJSON(jsonString)”2、“$.getJSON(url, data, success)”;3、“$.each(obj, callback)”;4、“$.ajax()”。更多jquery怎么操作json的详细内容,可以访问本专题下面的文章。

306

2023.10.13

go语言处理json数据方法
go语言处理json数据方法

本专题整合了go语言中处理json数据方法,阅读专题下面的文章了解更多详细内容。

74

2025.09.10

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

428

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

7

2025.12.22

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号