0

0

使用 YOLO 构建实时目标检测应用程序

霞舞

霞舞

发布时间:2024-11-24 20:21:02

|

523人浏览过

|

来源于dev.to

转载

使用 yolo 构建实时目标检测应用程序

物体检测已成为人工智能最令人兴奋的应用之一,使机器能够理解和解释视觉数据。在本教程中,我们将逐步介绍使用 yolo(只看一次)算法创建实时对象检测应用程序的步骤。这个强大的模型可以快速准确地检测图像和视频中的对象,使其适用于从监控到自动驾驶车辆的各种应用。

目录

  1. 什么是物体检测?
  2. 了解 yolo
  3. 设置您的环境
  4. 安装依赖项
  5. 构建对象检测应用程序
  6. 潜在用例
  7. 结论

什么是物体检测?

对象检测是一项计算机视觉任务,涉及识别和定位图像或视频流中的对象。与仅确定存在哪些对象的图像分类不同,对象检测提供检测到的对象周围的边界框及其类标签。

了解 yolo

yolo,代表“you only look once”,是一种最先进的实时目标检测算法。 yolo 的主要优点是速度;它实时处理图像,同时保持高精度。 yolo 将输入图像划分为网格,并预测每个网格单元的边界框和概率,使其能够在一次传递中检测多个对象。

设置您的环境

在我们深入研究代码之前,请确保您已安装以下软件:

  • python 3.x:从 python.org 下载。
  • opencv:计算机视觉任务的库。
  • numpy:数值计算库。
  • tensorflow 或 pytorch:取决于您运行 yolo 模型的偏好。

创建虚拟环境(可选)

创建虚拟环境可以帮助有效管理依赖关系:

python -m venv yolovenv
source yolovenv/bin/activate  # on windows use yolovenv\scripts\activate

安装依赖项

使用 pip 安装所需的库:

pip install opencv-python numpy

对于yolo,您可能需要下载预训练的权重和配置文件。您可以在 yolo 官方网站上找到 yolov3 权重和配置。

构建对象检测应用程序

现在,让我们创建一个使用 yolo 进行实时对象检测的 python 脚本。

第1步:加载yolo

创建一个名为 object_detection.py 的新 python 文件,并首先导入必要的库并加载 yolo 模型:

成新网络商城购物系统
成新网络商城购物系统

使用模板与程序分离的方式构建,依靠专门设计的数据库操作类实现数据库存取,具有专有错误处理模块,通过 Email 实时报告数据库错误,除具有满足购物需要的全部功能外,成新商城购物系统还对购物系统体系做了丰富的扩展,全新设计的搜索功能,自定义成新商城购物系统代码功能代码已经全面优化,杜绝SQL注入漏洞前台测试用户名:admin密码:admin888后台管理员名:admin密码:admin888

下载
import cv2
import numpy as np

# load yolo
net = cv2.dnn.readnet("yolov3.weights", "yolov3.cfg")
layer_names = net.getlayernames()
output_layers = [layer_names[i[0] - 1] for i in net.getunconnectedoutlayers()]

第2步:处理视频流

接下来,我们将从网络摄像头捕获视频并处理每一帧以检测对象:

# capture video from webcam
cap = cv2.videocapture(0)

while true:
    ret, frame = cap.read()
    height, width, channels = frame.shape

    # prepare the image for yolo
    blob = cv2.dnn.blobfromimage(frame, 0.00392, (416, 416), (0, 0, 0), true, crop=false)
    net.setinput(blob)
    outs = net.forward(output_layers)

    # process the detections
    class_ids = []
    confidences = []
    boxes = []

    for out in outs:
        for detection in out:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > 0.5:  # adjust confidence threshold as needed
                # object detected
                center_x = int(detection[0] * width)
                center_y = int(detection[1] * height)
                w = int(detection[2] * width)
                h = int(detection[3] * height)

                # rectangle coordinates
                x = int(center_x - w / 2)
                y = int(center_y - h / 2)

                boxes.append([x, y, w, h])
                confidences.append(float(confidence))
                class_ids.append(class_id)

    # apply non-max suppression
    indexes = cv2.dnn.nmsboxes(boxes, confidences, 0.5, 0.4)

    # draw bounding boxes and labels on the frame
    for i in range(len(boxes)):
        if i in indexes:
            x, y, w, h = boxes[i]
            label = str(classes[class_ids[i]])
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
            cv2.puttext(frame, label, (x, y + 30), cv2.font_hershey_plain, 3, (0, 255, 0), 3)

    cv2.imshow("image", frame)
    if cv2.waitkey(1) & 0xff == ord('q'):
        break

cap.release()
cv2.destroyallwindows()

第 3 步:运行应用程序

要运行应用程序,请执行脚本:

python object_detection.py

您应该看到一个显示网络摄像头源的窗口,其中检测到的对象实时突出显示。

潜在用例

实时物体检测具有广泛的应用,包括:

  • 监控系统:自动检测安全录像中的入侵者或异常活动。
  • 自动驾驶车辆:识别行人、交通标志和其他车辆以进行导航。
  • 零售分析:分析商店中的客户行为和流量模式。
  • 增强现实:通过检测现实世界的物体并与之交互来增强用户体验。

结论

恭喜!您已经使用 yolo 成功构建了实时对象检测应用程序。这种强大的算法为各个领域的应用开辟了多种可能性。当您进一步探索时,请考虑深入研究更高级的主题,例如针对特定对象检测任务微调 yolo 或将此应用程序与其他系统集成。

如果您有兴趣从事 ai 职业,并想了解如何成为一名成功的 ai 工程师,请查看此成为成功的 ai 工程师路线图,了解详细路线图。

请随时在下面的评论中分享您的想法、问题或经验。快乐编码!


相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

717

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

743

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

700

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号