0

0

AVLTree 类

WBOY

WBOY

发布时间:2024-07-25 10:50:01

|

862人浏览过

|

来源于dev.to

转载

avltree 类

avltree类扩展了bst类以重写insertdelete方法以在必要时重新平衡树。下面的代码给出了 avltree 类的完整源代码。

package demo;

public class AVLTree> extends BST {
    /** Create an empty AVL tree */
    public AVLTree() {}

    /** Create an AVL tree from an array of objects */
    public AVLTree(E[] objects) {
        super(objects);
    }

    @Override /** Override createNewNode to create an AVLTreeNode */
    protected AVLTreeNode createNewNode(E e) {
        return new AVLTreeNode(e);
    }

    @Override /** Insert an element and rebalance if necessary */
    public boolean insert(E e) {
        boolean successful = super.insert(e);
        if (!successful)
            return false; // e is already in the tree
        else {
            balancePath(e); // Balance from e to the root if necessary
        }

        return true; // e is inserted
    }

    /** Update the height of a specified node */
    private void updateHeight(AVLTreeNode node) {
        if (node.left == null && node.right == null) // node is a leaf
            node.height = 0;
        else if (node.left == null) // node has no left subtree
            node.height = 1 + ((AVLTreeNode)(node.right)).height;
        else if (node.right == null) // node has no right subtree
            node.height = 1 + ((AVLTreeNode)(node.left)).height;
        else
            node.height = 1 + Math.max(((AVLTreeNode)(node.right)).height, ((AVLTreeNode)(node.left)).height);
    }

    /** Balance the nodes in the path from the specified
    * node to the root if necessary
    */
    private void balancePath(E e) {
        java.util.ArrayList> path = path(e);
        for (int i = path.size() - 1; i >= 0; i--) {
            AVLTreeNode A = (AVLTreeNode)(path.get(i));
            updateHeight(A);
            AVLTreeNode parentOfA = (A == root) ? null : (AVLTreeNode)(path.get(i - 1));

            switch (balanceFactor(A)) {
            case -2:
                if (balanceFactor((AVLTreeNode)A.left) <= 0) {
                    balanceLL(A, parentOfA); // Perform LL rotation
                }
                else {
                    balanceLR(A, parentOfA); // Perform LR rotation
                }
                break;
                case +2:
                    if (balanceFactor((AVLTreeNode)A.right) >= 0) {
                        balanceRR(A, parentOfA); // Perform RR rotation
                    }
                else {
                    balanceRL(A, parentOfA); // Perform RL rotation
                }
            }
        }
    }

    /** Return the balance factor of the node */
    private int balanceFactor(AVLTreeNode node) {
        if (node.right == null) // node has no right subtree
            return -node.height;
        else if (node.left == null) // node has no left subtree
            return +node.height;
        else
            return ((AVLTreeNode)node.right).height - ((AVLTreeNode)node.left).height;
    }

    /** Balance LL (see Figure 26.2) */
    private void balanceLL(TreeNode A, TreeNode parentOfA) {
        TreeNode B = A.left; // A is left-heavy and B is left-heavy
        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.left = B.right; // Make T2 the left subtree of A
        B.right = A; // Make A the left child of B
        updateHeight((AVLTreeNode)A);
        updateHeight((AVLTreeNode)B);
    }

    /** Balance LR (see Figure 26.4) */
    private void balanceLR(TreeNode A, TreeNode parentOfA) {
        TreeNode B = A.left; // A is left-heavy
        TreeNode C = B.right; // B is right-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.left = C.right; // Make T3 the left subtree of A
        B.right = C.left; // Make T2 the right subtree of B
        C.left = B;
        C.right = A;

        // Adjust heights
        updateHeight((AVLTreeNode)A);
        updateHeight((AVLTreeNode)B);
        updateHeight((AVLTreeNode)C);
    }

    /** Balance RR (see Figure 26.3) */
    private void balanceRR(TreeNode A, TreeNode parentOfA) {
        TreeNode B = A.right; // A is right-heavy and B is right-heavy

        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.right = B.left; // Make T2 the right subtree of A
        B.left = A;
        updateHeight((AVLTreeNode)A);
        updateHeight((AVLTreeNode)B);
    }

    /** Balance RL (see Figure 26.5) */
    private void balanceRL(TreeNode A, TreeNode parentOfA) {
        TreeNode B = A.right; // A is right-heavy
        TreeNode C = B.left; // B is left-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.right = C.left; // Make T2 the right subtree of A
        B.left = C.right; // Make T3 the left subtree of B
        C.left = A;
        C.right = B;

        // Adjust heights
        updateHeight((AVLTreeNode)A);
        updateHeight((AVLTreeNode)B);
        updateHeight((AVLTreeNode)C);
    }

    @Override /** Delete an element from the AVL tree.
    * Return true if the element is deleted successfully
    * Return false if the element is not in the tree */
    public boolean delete(E element) {
        if (root == null)
            return false; // Element is not in the tree

        // Locate the node to be deleted and also locate its parent node
        TreeNode parent = null;
        TreeNode current = root;
        while (current != null) {
            if (element.compareTo(current.element) < 0) {
                parent = current;
                current = current.left;
            }
            else if (element.compareTo(current.element) > 0) {
                parent = current;
                current = current.right;
            }
            else
                break; // Element is in the tree pointed by current
        }

        if (current == null)
            return false; // Element is not in the tree

        // Case 1: current has no left children (See Figure 25.10)
        if (current.left == null) {
            // Connect the parent with the right child of the current node
            if (parent == null) {
                root = current.right;
            }
            else {
                if (element.compareTo(parent.element) < 0)
                    parent.left = current.right;
                else
                    parent.right = current.right;
                // Balance the tree if necessary
                balancePath(parent.element);
            }
        }
        else {
            // Case 2: The current node has a left child
            // Locate the rightmost node in the left subtree of
            // the current node and also its parent
            TreeNode parentOfRightMost = current;
            TreeNode rightMost = current.left;

            while (rightMost.right != null) {
                parentOfRightMost = rightMost;
                rightMost = rightMost.right; // Keep going to the right
            }

            // Replace the element in current by the element in rightMost
            current.element = rightMost.element;

            // Eliminate rightmost node
            if (parentOfRightMost.right == rightMost)
                parentOfRightMost.right = rightMost.left;
            else
                // Special case: parentOfRightMost is current
                parentOfRightMost.left = rightMost.left;
            // Balance the tree if necessary
            balancePath(parentOfRightMost.element);
        }

        size--;
        return true; // Element inserted
    }

    /** AVLTreeNode is TreeNode plus height */
    protected static class AVLTreeNode> extends BST.TreeNode {
        protected int height = 0; // New data field

        public AVLTreeNode(E e) {
            super(e);
        }
    }
}

avltree 类扩展了bst。与 bst 类一样,avltree 类有一个无参构造函数,用于构造一个空的 avltree(第 5 行),以及一个从元素数组创建初始 avltree 的构造函数(第 8-10 行) .

bst类中定义的createnewnode()方法创建一个treenode。重写此方法以返回 avltreenode(第 13-15 行)。

Lateral App
Lateral App

整理归类论文

下载

avltree中的insert方法在第18-27行被覆盖。该方法首先调用bst中的insert方法,然后调用balancepath(e)(第23行)来确保树是平衡的。

balancepath方法首先获取从包含元素e的节点到根节点的路径上的节点(第45行)。对于路径中的每个节点,更新其高度(第 48 行),检查其平衡系数(第 51 行),并在必要时执行适当的旋转(第 51-67 行)。

第 82-178 行定义了四种执行旋转的方法。每个方法都使用两个

treenode 参数(aparentofa)进行调用,以在节点 a 处执行适当的旋转。帖子中的附图说明了如何执行每次旋转。旋转后,节点abc的高度更新(第98、125、148、175行)。

avltree中的delete方法在第183-248行被重写。该方法与bst类中实现的方法相同,只是在两种情况下需要在删除后重新平衡节点(第218、243行)。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
数据库Delete用法
数据库Delete用法

数据库Delete用法:1、删除单条记录;2、删除多条记录;3、删除所有记录;4、删除特定条件的记录。更多关于数据库Delete的内容,大家可以访问下面的文章。

266

2023.11.13

drop和delete的区别
drop和delete的区别

drop和delete的区别:1、功能与用途;2、操作对象;3、可逆性;4、空间释放;5、执行速度与效率;6、与其他命令的交互;7、影响的持久性;8、语法和执行;9、触发器与约束;10、事务处理。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

207

2023.12.29

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

61

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

41

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

32

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

41

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

198

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

9

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

8

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号