0

0

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

王林

王林

发布时间:2024-05-30 17:52:01

|

1020人浏览过

|

来源于机器之心

转载

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

在今天的数字化时代,3d 资产在元宇宙的建构、数字孪生的实现以及虚拟现实和增强现实的应用中扮演着重要角色,促进了技术创新和用户体验的提升。

现有的3D资产生成方法通常利用生成式模型基于空间变化双向反射分布函数(SVBRDF, Spatially Varying Bidirectional Reflectance Distribution Function)在预设光照条件下推断表面位置的材质属性。然而,这些方法很少考虑到人们对身边常见物体的表面材质认知构建出的强大且丰富的先验知识(例如汽车轮胎应为外缘的橡胶胎面包裹着金属轮毂),且忽略了材质应该与物体本身的 RGB 色彩进行解耦。 Without changing the original meaning, the existing 3D asset generation methods often utilize generative models based on spatially varying bidirectional reflectance distribution function (SVBRDF) to infer material properties given the surface positions under predefined lighting conditions. However, these methods rarely take into account the strong and rich prior knowledge that people have in constructing the surface materials of common objects around us (such as the fact that car tires should have rubber tread covering metal rims on the outer edge), and they disregard the decoupling between material and the RGB color of objects themselves.

因此,如何将人类对物体表面材质的先验知识有效地融入到材质生成过程中,从而提高现有3D资产的整体质量,成为了当前研究的重要课题。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

对于这一问题,近日,中国科学院自动化研究所、北京邮电大学及香港理工大学等京港两地的研究团队发布了名为《MaterialSeg3D: Segmenting Dense Materials from 2D Priors for 3D Assets》的论文,构造了首个针对多种类复杂材质物体的 2D 材质分割数据集 MIO,其中包含了多种语义类别下的、单一物体的、各个相机角度的像素级材质标签。该研究提出了一种能够利用 2D 语义先验在 UV 空间中推断出 3D 资产表面材质的材质生成方案 —— MaterialSeg3D。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

  • 论文:https://arxiv.org/pdf/2404.13923

  • 代码地址:https://github.com/PROPHETE-pro/MaterialSeg3D_

  • 项目网站:https://materialseg3d.github.io/3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式


3D 建模师通常根据生活常识或真实世界的物体原型来定义资产表面的材质。相比之下,基于生成式模型构建 3D 资产的方法使用 SVBRDF 来推断材质信息,但由于缺乏准确的高质量 3D 资产样本,这些方法难以生成高泛化性和高保真度的物理材质通道信息。此外,这类方法也未能利用公开网站中的海量 Web Image 数据来丰富物体表面材质信息的先验知识。

因此,本文聚焦于如何将 2D 图片中关于材质的先验知识引入解决 3D 资产材质信息定义的任务中。

MIO 数据集

这篇论文首先尝试从现有 3D 资产数据集中提取材质分类的先验知识,但由于数据集样本过少且风格单一,分割模型难以学习到正确的先验知识。

相比 3D 资产,2D 图像则更为广泛地存在于公开网站或数据集上。然而,现有的带注释 2D 图像数据集与 3D 资产渲染图的分布存在较大差距,无法直接提供足够的材质先验知识。

因此,本文构建了一个定制数据集 MIO(Materialized Individual Objects),是目前最大的多类别单一复杂材质资产的 2D 材质分割数据集,包含了从各种相机角度采样的图像,并由专业团队精确注释。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

                               材质类注释和 PBR 材质球体映射的可视化示例。

在构造该数据集时,本文遵循以下规则: 

  • 每张采样图像中只包含一个突出的前景物体 

  • 收集相似数量的真实场景 2D 图片和 3D 资产渲染图

  • 收集各个相机角度的图像样本,包括顶视图和仰视图等特殊视角

MIO 数据集的独到之处在于,它不仅仅构造了每种材质类别的像素级标签,还单独构建了每个材质类别与 PBR 材质取值间的一一映射关系。这些映射关系是由 9 名专业 3D 建模师经过讨论后确定的。本文从公共材质库收集了超过 1000 个真实的 PBR 材质球作为备选材质,并依据建模师的专业知识进行筛选与指定,最终确定了 14 个材质类别并将其与 PBR 材质的映射关系作为数据集的标注空间。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

Contentfries
Contentfries

将长视频改造成更加引人注目的短视频

下载

MIO 数据集共包含 23,062 张单个复杂物体的多视角图像,分为 5 个大的元类:家具、汽车、建筑、乐器和植物,具体又可以分为 20 种具体的类别,特别值得一提的是,MIO 数据集中包含大约 4000 张俯视图图像,提供了在现有 2D 数据集中很少出现的独特视角。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

MaterialSeg3D

有了 MIO 数据集作为可靠的材质信息先验知识来源,这篇论文随后提出了名为 MaterialSeg3D 的全新 3D 资产表面材质预测新范式,为给定的资产表面生成合理的 PBR 材质,从而能够真实地模拟物体的物理特性,包括光照、阴影和反射,使 3D 物体在各种环境下都表现出高度的真实性和一致性,为现有 3D 资产缺乏材质信息的问题提出有效解决方案。

MaterialSeg3D 整个处理流程中包括三个部分:3D 资产的多视图渲染、多视图下的材质预测和 3D 材质 UV 生成。在多视图渲染阶段,确定了俯视图、侧视图和 12 个环绕角度的相机姿势,以及随机的俯仰角度,生成 2D 渲染图像。在材质预测阶段,利用基于 MIO 数据集训练的材质分割模型,对多视角渲染图进行像素级的材质标签预测。在材质 UV 生成阶段,将材质预测结果映射到临时 UV 图上,通过加权投票机制处理得到最终的材质标签 UV,并转化为 PBR 材质贴图。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

可视化的效果与实验

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

为评估 MaterialSeg3D 的有效性,本文进行了与近期相似工作的定量与定性实验分析,重点关注单图像到 3D 资产的生成方法、纹理生成以及公共 3D 资产三个方面。对于单图像到 3D 资产的生成方法,与 Wonder3D、TripoSR 和 OpenLRM 进行了比较,这些方法将资产的某一参照视图作为输入,直接生成具有纹理特征的 3D 对象。通过可视化图片观察到,MaterialSeg3D 处理后的资产在渲染的真实性方面相较之前的工作有显著改善。论文还比较了现有的纹理生成方法,如 Fantasia3D、Text2Tex 以及 Meshy 网站提供的在线功能,这些方法可以根据文本提示信息生成纹理结果。

在此基础上,MaterialSeg3D 在不同的光照条件下能够生成精确的 PBR 材质信息,使渲染效果更加真实。

定量实验采用 CLIP Similarity、PSNR、SSIM 作为评价指标,选择 Objaverse-1.0 数据集中的资产作为测试样本,并随机选择三个相机角度作为新视图。

3D资产生成领域福音:自动化所、北邮团队联合打造材质生成新范式

这些实验证明了 MaterialSeg3D 的有效性。其能够生成公共 3D 资产缺失的 PBR 材质信息,为建模师和后续的研究工作提供更多优质资产。

总结与展望

这篇论文针对 3D 资产表面材质生成问题进行了探索,构建了定制的 2D 材质分割数据集 MIO。在这一可靠数据集的支持下,提出了新的 3D 资产表面材质生成范式 MaterialSeg3D,能够为单个 3D 资产生成可解耦的独立 PBR 材质信息,显著增强了现有 3D 资产在不同光照条件下的渲染真实性和合理性。

作者指出,未来的研究将专注于扩展数据集中物体元类的数量、通过生成伪标签扩大数据集规模以及对材质分割模型进行自训练,以便该生成范式能够直接应用于绝大多数种类的 3D 资产。

相关专题

更多
edge是什么浏览器
edge是什么浏览器

Edge是一款由Microsoft开发的网页浏览器,是Windows 10操作系统中默认的浏览器,其目标是提供更快、更安全、更现代化的浏览器体验。本专题为大家提供edge浏览器相关的文章、下载、课程内容,供大家免费下载体验。

1252

2023.08.21

IE浏览器自动跳转EDGE如何恢复
IE浏览器自动跳转EDGE如何恢复

ie浏览器自动跳转edge的解决办法:1、更改默认浏览器设置;2、阻止edge浏览器的自动跳转;3、更改超链接的默认打开方式;4、禁用“快速网页查看器”;5、卸载edge浏览器;6、检查第三方插件或应用程序等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

373

2024.03.05

如何解决Edge打开但没有标题的问题
如何解决Edge打开但没有标题的问题

若 Microsoft Edge 浏览器打开后无标题(窗口空白或标题栏缺失),可尝试以下方法解决: 重启 Edge:关闭所有窗口,重新启动浏览器。 重置窗口布局:右击任务栏 Edge 图标 → 选择「最大化」或「还原」。 禁用扩展:进入 edge://extensions 临时关闭插件测试。 重置浏览器设置:前往 edge://settings/reset 恢复默认配置。 更新或重装 Edge:检查最新版本,或通过控制面板修复

831

2025.04.24

function是什么
function是什么

function是函数的意思,是一段具有特定功能的可重复使用的代码块,是程序的基本组成单元之一,可以接受输入参数,执行特定的操作,并返回结果。本专题为大家提供function是什么的相关的文章、下载、课程内容,供大家免费下载体验。

470

2023.08.04

js函数function用法
js函数function用法

js函数function用法有:1、声明函数;2、调用函数;3、函数参数;4、函数返回值;5、匿名函数;6、函数作为参数;7、函数作用域;8、递归函数。本专题提供js函数function用法的相关文章内容,大家可以免费阅读。

158

2023.10.07

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1665

2024.08.16

PHP 命令行脚本与自动化任务开发
PHP 命令行脚本与自动化任务开发

本专题系统讲解 PHP 在命令行环境(CLI)下的开发与应用,内容涵盖 PHP CLI 基础、参数解析、文件与目录操作、日志输出、异常处理,以及与 Linux 定时任务(Cron)的结合使用。通过实战示例,帮助开发者掌握使用 PHP 构建 自动化脚本、批处理工具与后台任务程序 的能力。

21

2025.12.13

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

1

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Node.js 教程
Node.js 教程

共57课时 | 7.7万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号