0

0

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

WBOY

WBOY

发布时间:2024-03-11 14:40:04

|

710人浏览过

|

来源于51CTO.COM

转载

大型模型仅能记忆和理解有限的上下文,这已成为它们在实际应用中的一大制约。例如,对话型人工智能系统常常无法持久记忆前一天的对话内容,这导致利用大型模型构建的智能体表现出前后不一致的行为和记忆。

为了让大型模型能够更好地处理更长的上下文,研究人员提出了一种名为InfLLM的新方法。这一方法由清华大学、麻省理工学院和人民大学的研究人员联合提出,它能够使大型语言模型(LLM)无需额外的训练就能够处理超长文本。InfLLM利用了少量的计算资源和显存开销,从而实现了对超长文本的高效处理。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

论文地址:https://arxiv.org/abs/2402.04617

代码仓库:https://github.com/thunlp/InfLLM

实验结果表明,InfLLM能够有效地扩展Mistral、LLaMA的上下文处理窗口,并在1024K上下文的海底捞针任务中实现100%召回。

研究背景

大规模预训练语言模型(LLMs)近几年在众多任务上取得了突破性的进展,成为众多应用的基础模型。

这些实际应用也对LLMs处理长序列的能力提出了更高的挑战。例如,LLM驱动的智能体需要持续处理从外部环境接收的信息,这要求它具备更强的记忆能力。同时,对话式人工智能需要更好地记住与用户的对话内容,以便生成更个性化的回答。

然而,目前的大型模型通常只在包含数千个Token的序列上进行预训练,这导致将它们应用于超长文本时面临两大挑战:

1. 分布外长度:直接将LLMs应用到更长长度的文本中,往往需要LLMs处理超过训练范围的位置编码,从而造成Out-of-Distribution问题,无法泛化;

2. 注意力干扰:过长的上下文将使模型注意力被过度分散到无关的信息中,从而无法有效建模上下文中远距离语义依赖。

方法介绍

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

InfLLM示意图

为了高效地实现大模型的长度泛化能力,作者提出了一种无需训练的记忆增强方法,InfLLM,用于流式地处理超长序列。

InfLLM旨在激发LLMs的内在能力,以有限的计算成本捕获超长上下文中的长距离语义依赖关系,从而实现高效的长文本理解。

整体框架:考虑到长文本注意力的稀疏性,处理每个Token通常只需要其上下文的一小部分。

作者构建了一个外部记忆模块,用于存储超长上下文信息;采用滑动窗口机制,每个计算步骤,只有与当前Token距离相近的Tokens(Local Tokens)和外部记忆模块中的少量相关信息参与到注意力层的计算中,而忽略其他不相关的噪声。

因此,LLMs可以使用有限的窗口大小来理解整个长序列,并避免引入噪声。

然而,超长序列中的海量上下文对于记忆模块中有效的相关信息定位和记忆查找效率带来了重大挑战。

为了应对这些挑战,上下文记忆模块中每个记忆单元由一个语义块构成,一个语义块由连续的若干Token构成。

具体而言, (1)为了有效定位相关记忆单元,每个语义块的连贯语义比碎片化的Token更能有效满足相关信息查询的需求。

此外,作者从每个语义块中选择语义上最重要的Token,即接收到注意力分数最高的Token,作为语义块的表示,这种方法有助于避免在相关性计算中不重要Token的干扰。

(2)为了高效的内存查找,语义块级别的记忆单元避免了逐Token,逐注意力的相关性计算,降低了计算复杂性。

此外,语义块级别的记忆单元确保了连续的内存访问,并减少了内存加载成本。

得益于此,作者设计了一种针对上下文记忆模块的高效卸载机制(Offloading)。

考虑到大多数记忆单元的使用频率不高,InfLLM将所有记忆单元卸载到CPU内存上,并动态保留频繁使用的记忆单元放在GPU显存中,从而显著减少了显存使用量。

可以将InfLLM总结为:

1. 在滑动窗口的基础上,加入远距离的上下文记忆模块。

2. 将历史上下文切分成语义块,构成上下文记忆模块中的记忆单元。每个记忆单元通过其在之前注意力计算中的注意力分数确定代表性Token,作为记忆单元的表示。从而避免上下文中的噪音干扰,并降低记忆查询复杂度

实验分析

作者在 Mistral-7b-Inst-v0.2(32K) 和 Vicuna-7b-v1.5(4K)模型上应用 InfLLM,分别使用4K和2K的局部窗口大小。

与原始模型、位置编码内插、Infinite-LM以及StreamingLLM进行比较,在长文本数据 Infinite-Bench 和 Longbench 上取得了显著的效果提升。

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

超长文本实验

此外,作者继续探索了 InfLLM 在更长文本上的泛化能力,在 1024K 长度的「海底捞针」任务中仍能保持 100% 的召回率。

清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!

海底捞针实验结果

总结

在本文中,团队提出了 InfLLM,无需训练即可实现 LLM 的超长文本处理拓展,并可以捕捉到长距离的语义信息。

InfLLM 在滑动窗口的基础上,增加了包含长距离上下文信息的记忆模块,并使用缓存和offload 机制实现了少量计算和显存消耗的流式长文本推理。

相关专题

更多
登录token无效
登录token无效

登录token无效解决方法:1、检查token的有效期限,如果token已经过期,需要重新获取一个新的token;2、检查token的签名,如果签名不正确,需要重新获取一个新的token;3、检查密钥的正确性,如果密钥不正确,需要重新获取一个新的token;4、使用HTTPS协议传输token,建议使用HTTPS协议进行传输 ;5、使用双因素认证,双因素认证可以提高账户的安全性。

6027

2023.09.14

登录token无效怎么办
登录token无效怎么办

登录token无效的解决办法有检查Token是否过期、检查Token是否正确、检查Token是否被篡改、检查Token是否与用户匹配、清除缓存或Cookie、检查网络连接和服务器状态、重新登录或请求新的Token、联系技术支持或开发人员等。本专题为大家提供token相关的文章、下载、课程内容,供大家免费下载体验。

778

2023.09.14

token怎么获取
token怎么获取

获取token值的方法:1、小程序调用“wx.login()”获取 临时登录凭证code,并回传到开发者服务器;2、开发者服务器以code换取,用户唯一标识openid和会话密钥“session_key”。想了解更详细的内容,可以阅读本专题下面的文章。

1043

2023.12.21

token什么意思
token什么意思

token是一种用于表示用户权限、记录交易信息、支付虚拟货币的数字货币。可以用来在特定的网络上进行交易,用来购买或出售特定的虚拟货币,也可以用来支付特定的服务费用。想了解更多token什么意思的相关内容可以访问本专题下面的文章。

1062

2024.03.01

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

390

2023.08.17

人工智能的基本概念是什么
人工智能的基本概念是什么

人工智能的英文缩写为AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学;该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

282

2024.01.09

人工智能不能取代人类的原因是什么
人工智能不能取代人类的原因是什么

人工智能不能取代人类的原因包括情感与意识、创造力与想象力、伦理与道德、社会交往与沟通能力、灵活性与适应性、持续学习和自我提升等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

617

2024.09.10

Python 人工智能
Python 人工智能

本专题聚焦 Python 在人工智能与机器学习领域的核心应用,系统讲解数据预处理、特征工程、监督与无监督学习、模型训练与评估、超参数调优等关键知识。通过实战案例(如房价预测、图像分类、文本情感分析),帮助学习者全面掌握 Python 机器学习模型的构建与实战能力。

32

2025.10.21

笔记本电脑卡反应很慢处理方法汇总
笔记本电脑卡反应很慢处理方法汇总

本专题整合了笔记本电脑卡反应慢解决方法,阅读专题下面的文章了解更多详细内容。

1

2025.12.25

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 2.4万人学习

Go 教程
Go 教程

共32课时 | 2.9万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 1.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号