0

0

python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

王林

王林

发布时间:2024-02-06 09:27:07

|

1006人浏览过

|

来源于stackoverflow

转载

python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

问题内容

我尝试使用 cupy 进行 gpu 加速来实现用于机器学习和图像分类的 softmax 激活函数。我观察到,对于形状为 nx1 或 1xn 的数组,cupys max 函数会输出错误。然而,对于 nxa 的所有其他情况(其中 n 和 a 都是 1 以外的整数),它工作得很好。

我的代码:

def softmax_(z):
    max_z = cp.max(z, axis=0, keepdims=true)  # problematic max function
    exp_z = cp.exp(z - max_z)  # subtracting the maximum value for numerical stability
    sum_exp_z = cp.sum(exp_z, axis=0, keepdims=true)  # summing up the values
    return exp_z / sum_exp_z  # dividing them to get the softmax

array1 = cp.random.randn(3, 4)  # 3x4
array2 = cp.random.randn(5, 1)  # 5x1

print(softmax_(array1))  # no error
print(softmax_(array2))  # produces an error

我的操作系统错误,我对此缺乏经验:

oserror: [winerror 123] the filename, directory name, or volume label syntax is incorrect: 'c:\\users\\confidential\\.cupy\\jitify_cache\\tmp1pxgjv_g' -> 'c:\\users\\confidential/.cupy/jitify_cache/jitify__200200_12030_2_b3452ffa79e273adadd0403b6b0c05b78158b1e0.json'

数组 1 的输出

立即学习Python免费学习笔记(深入)”;

JenMusic
JenMusic

一个新兴的AI音乐生成平台,专注于多乐器音乐创作。

下载
output:  [[0.17813469 0.20912114 0.19734889 0.30515635]  [0.42569072
0.47354802 0.4463671  0.20997539]  [0.39617459 0.31733085 0.356284   0.48486825]]

数组2的错误:

../../util_ptx.cuh(38): warning: util_type.cuh: [jitify] File not found 
../../util_ptx.cuh(41): warning: util_debug.cuh: [jitify] File not found
../../thread/thread_load.cuh(40): warning: ../util_ptx.cuh: [jitify] File not found
Traceback (most recent call last):
  File "c:\Users\confidential\Desktop\Projekte\Neural_network2\test.py", line 14, in         
    print(softmax_(array2))
          ^^^^^^^^^^^^^^^^
  File "c:\Users\confidential\Desktop\Projekte\Neural_network2\test.py", line 4, in softmax_
    `max_Z = cp.max(Z, axis=0, keepdims=True)`
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\_statistics\order.py", line 81, in amax
    return a.max(axis=axis, out=out, keepdims=keepdims)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "cupy\_core\core.pyx", line 990, in cupy._core.core._ndarray_base.max
  File "cupy\_core\core.pyx", line 998, in cupy._core.core._ndarray_base.max
  File "cupy\_core\_routines_statistics.pyx", line 43, in cupy._core._routines_statistics._ndarray_max
  File "cupy\_core\_reduction.pyx", line 618, in cupy._core._reduction._SimpleReductionKernel.__call__
  File "cupy\_core\_reduction.pyx", line 370, in cupy._core._reduction._AbstractReductionKernel._call
  File "cupy\_core\_cub_reduction.pyx", line 689, in cupy._core._cub_reduction._try_to_call_cub_reduction
  File "cupy\_core\_cub_reduction.pyx", line 540, in cupy._core._cub_reduction._launch_cub    
  File "cupy\_util.pyx", line 64, in cupy._util.memoize.decorator.ret
  File "cupy\_core\_cub_reduction.pyx", line 240, in cupy._core._cub_reduction._SimpleCubReductionKernel_get_cached_function
  File "cupy\_core\_cub_reduction.pyx", line 223, in cupy._core._cub_reduction._create_cub_reduction_function
  File "cupy\_core\core.pyx", line 2254, in cupy._core.core.compile_with_cache
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 484, in _compile_module_with_cache
    return _compile_with_cache_cuda(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 562, in _compile_with_cache_cuda
    ptx, mapping = compile_using_nvrtc(
                   ^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 319, in compile_using_nvrtc
    return _compile(source, options, cu_path,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 284, in _compile
    options, headers, include_names = _jitify_prep(
                                      ^^^^^^^^^^^^^
  File "C:\Users\confidential\PycharmProjects\nunpy\venv\Lib\site-packages\cupy\cuda\compiler.py", line 233, in _jitify_prep
    jitify._init_module()
  File "cupy\cuda\jitify.pyx", line 212, in cupy.cuda.jitify._init_module
  File "cupy\cuda\jitify.pyx", line 233, in cupy.cuda.jitify._init_module
  File "cupy\cuda\jitify.pyx", line 209, in cupy.cuda.jitify._init_cupy_headers
  File "cupy\cuda\jitify.pyx", line 198, in cupy.cuda.jitify._init_cupy_headers_from_scratch  
  File "cupy\cuda\jitify.pyx", line 128, in cupy.cuda.jitify.dump_cache
OSError: [WinError 123] The syntax for the file name, directory name, or volume label is incorrect: 'C:\\Users\\confidential\\.cupy\\jitify_cache\\tmps16uxq46' -> 'C:\\Users\\confidential/.cupy/jitify_cache/jitify__200200_12030_2_b3452ffa79e273adadd0403b6b0c05b78158b1e0.json'

正确答案


您需要遵循的一些调试步骤。

1)更新cupy

pip install cupy --upgrade

2) 检查权限。 确保运行脚本的用户具有读取和写入 cupy_cache_dir 环境变量中指定的缓存目录的必要权限。

  1. 重塑输入数组 如果问题仍然存在,您可以尝试将输入数组重塑为 '(n,)' 的形状,而不是 '(n, 1)''(1, n)'

4)禁用jit编译 您可以尝试通过将 cupy_cache_dir 环境变量设置为有效目录来禁用 jit 编译。

import cupy as cp
import os

os.environ['CUPY_CACHE_DIR'] = '/path/to/valid/directory'

将“/path/to/valid/directory”替换为 cupy 可以成功缓存已编译内核的目录。这可能会帮助您避免 oserror。

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

743

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

74

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号