0

0

使用卷积神经网络对手写数字进行识别

PHPz

PHPz

发布时间:2024-01-23 21:03:22

|

1738人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

使用卷积神经网络对mnist数据集进行分类

MNIST数据集是由手写数字组成的,包括60,000个训练样本和10,000个测试样本。每个样本都是一个28x28像素的灰度图像,表示从0到9的数字。

Molica AI
Molica AI

一款聚合了多种AI工具的一站式创作平台

下载

卷积神经网络(CNN)是深度学习中用于图像分类的模型。它通过卷积层和池化层提取图像特征,并用全连接层进行分类。

下面我将介绍如何使用Python和TensorFlow实现一个简单的CNN模型来对MNIST数据集进行分类。

首先,我们需要导入必要的库和MNIST数据集:

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

接下来,我们需要将图像数据归一化并将标签数据转换为独热编码格式:

# 归一化图像数据
x_train = x_train / 255.0
x_test = x_test / 255.0

# 将标签数据转换为独热编码格式
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

然后,我们定义CNN模型。这个模型包括两个卷积层和两个池化层,以及一个全连接层。我们使用ReLU激活函数,并在最后一层使用Softmax激活函数进行分类。代码如下:

model = tf.keras.models.Sequential([
    # 第一个卷积层
    tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    # 第二个卷积层
    tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    # 将特征图展平
    tf.keras.layers.Flatten(),
    # 全连接层
    tf.keras.layers.Dense(units=128, activation='relu'),
    # 输出层
    tf.keras.layers.Dense(units=10, activation='softmax')
])

接下来,我们需要编译模型并指定损失函数、优化器和评估指标:

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

最后,我们训练模型并进行测试:

# 训练模型
model.fit(x_train.reshape(-1, 28, 28, 1), y_train, epochs=5, batch_size=32)

# 测试模型
score = model.evaluate(x_test.reshape(-1, 28, 28, 1), y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

在运行完整代码后,我们可以看到模型的测试准确率约为99%。

总结一下,使用卷积神经网络对MNIST数据集进行分类的步骤如下:

1.加载MNIST数据集并进行预处理,包括归一化和独热编码;

2.定义CNN模型,包括卷积层、池化层和全连接层,并指定激活函数;

3.编译模型,指定损失函数、优化器和评估指标;

4.训练模型,并在测试集上进行测试。

以上是一个简单的示例,可以根据具体情况进行修改和优化。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

743

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

布尔教育设计模式视频教程
布尔教育设计模式视频教程

共10课时 | 2.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号