0

0

利用pandas轻松处理txt文件数据

WBOY

WBOY

发布时间:2024-01-19 08:50:15

|

2366人浏览过

|

来源于php中文网

原创

利用pandas轻松处理txt文件数据

利用pandas轻松处理txt文件数据

在数据分析和处理中,常遇到从txt文件读入的数据需要进行处理的情况。比如数据格式混乱,需要清洗;某些列无效,需要删除;某些列需要转换类型等。这些工作可能带来很大的工作量和时间花费,但是我们可以通过pandas这个Python库来轻松地完成这些操作。

本文将结合代码示例,教你如何使用pandas处理txt文件数据。

  1. 引入pandas库

在使用pandas库前,我们需要先引入它。在Python脚本中,一般约定将pandas库重命名为pd,方便后续调用。

import pandas as pd
  1. 读取txt文件

首先,我们需要读取txt文件中的数据。在pandas中,我们使用pd.read_csv()函数来读入数据。虽然函数名中包含了csv,但是该函数同样适用于读入txt文件。

data = pd.read_csv('data.txt', sep='    ', header=None)

该函数参数解释如下:

  • 'data.txt': 表示我们需要读取的txt文件的路径和文件名。
  • sep: 表示数据分隔符,此处使用' '表示数据之间由tab隔开,也可以换成其他符号。
  • header: 表示文件中是否包含列名,若不包含则设置为None。

读入数据后,我们可以通过打印输出data来查看数据的内容和形式。

print(data)

输出结果:

   0    1    2
0  A  123  1.0
1  B  321  2.0
2  C  231  NaN
3  D  213  4.0
4  E  132  3.0

可以看出,读入的数据已经以DataFrame的形式存储在了data中。

  1. 清洗数据

读入的数据可能存在很多格式不规范或错误的地方,需要我们进行数据清洗。比如,有些行或列中可能存在缺失值,我们需要将其填充或删除;有些列的数据类型可能不符合我们的需求,我们需要将其转换为数值或字符串类型等。

a. 删除含有缺失值的行

我们可以使用dropna()函数来删除含有缺失值的行。

data_clean = data.dropna()

该函数会删除数据中任意含有缺失值的行,返回只有完整数据的DataFrame。

MVM mall 网上购物系统
MVM mall 网上购物系统

采用 php+mysql 数据库方式运行的强大网上商店系统,执行效率高速度快,支持多语言,模板和代码分离,轻松创建属于自己的个性化用户界面 v3.5更新: 1).进一步静态化了活动商品. 2).提供了一些重要UFT-8转换文件 3).修复了除了网银在线支付其它支付显示错误的问题. 4).修改了LOGO广告管理,增加LOGO链接后主页LOGO路径错误的问题 5).修改了公告无法发布的问题,可能是打压

下载

b. 填充缺失值

如果不能删除含有缺失值的行,我们可以选择填充这些缺失值。使用fillna()函数即可。

data_fill = data.fillna(0)

该函数将缺失值填充为0,如果想以其他值进行填充,可以在括号内传入相应的值。

c. 转换数据类型

在数据分析中,需要将某些数据类型转换为数值型或字符型以便后续计算或处理。在pandas中,可以使用astype()函数进行类型转换。

data_conversion = data_clean.astype({'1': 'int', '2': 'str'})

该函数可以将data_clean中第1列的类型转换为整型(int),第2列的类型转换为字符串型(str)。

  1. 保存新数据

最后,我们需要将经过清洗和处理后的数据保存到新的txt文件中。在pandas中,我们可以使用to_csv()函数来实现。

data_clean.to_csv('data_clean.txt', index=False, header=False, sep='    ')

该函数参数解释如下:

  • 'data_clean.txt': 表示保存文件的路径和文件名。
  • index: 表示是否保留行索引,此处选择False不保留。
  • header: 表示文件中是否包含列名,此处选择False不包含。
  • sep: 表示分隔符,此处使用' '表示以tab作为分隔符。

代码示例

下面是完整的代码示例,你可以将其复制到Python脚本中并运行。

import pandas as pd

# 读入数据
data = pd.read_csv('data.txt', sep='    ', header=None)
print('原始数据:
', data)

# 删除含有缺失值的行
data_clean = data.dropna()
print('处理后数据(删除缺失值):
', data_clean)

# 填充缺失值
data_fill = data.fillna(0)
print('处理后数据(填充缺失值):
', data_fill)

# 转换数据类型
data_conversion = data_clean.astype({'1': 'int', '2': 'str'})
print('处理后数据(类型转换):
', data_conversion)

# 保存新数据
data_clean.to_csv('data_clean.txt', index=False, header=False, sep='    ')

本文介绍了如何使用pandas轻松处理txt文件数据,包括读取、清洗、转换和保存数据。pandas作为Python中重要的数据处理工具之一,可以帮助我们更加高效地完成数据挖掘和分析任务。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

750

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

635

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

3

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Pandas 教程
Pandas 教程

共15课时 | 0.9万人学习

Git 教程
Git 教程

共21课时 | 2.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号