0

0

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

WBOY

WBOY

发布时间:2023-11-13 08:26:39

|

1165人浏览过

|

来源于51CTO.COM

转载

谷歌deepmind最近发现的一项新结果在transformer领域引起了广泛争议:

它的泛化能力,无法扩展到训练数据以外的内容。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

目前这一结论还没有进一步得到验证,但已经惊动了一众大佬,比如Keras之父Francois Chollet表示,如果消息为真,将成为大模型界的一件大事。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

谷歌Transformer是今天大模型背后的基础架构,我们所熟悉的GPT里的“T”指的就是它。

一系列大模型表现出强大的上下文学习能力,可以快速学习示例并完成新的任务。

但现在,同样来自Google的研究人员似乎指出了它的致命缺陷——超出训练数据也就是人类已有知识之外,全都无能为力。

一时间,不少从业者认为AGI再次变得遥不可及。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

有些网友指出,论文中还有一些被忽视的关键细节,例如实验只涉及到了GPT-2的规模,训练数据也不够丰富

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

随着时间的推移,更多认真研究了这篇论文的网友则指出,研究结论本身没什么问题,但人们却基于此做出过度的解读。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

在论文引发网友热议后,其中一位作者也公开进行了两点澄清:

首先,实验中采用的是简单的Transformer,既不是“大”模型,也不是语言模型;

其次,模型是可以学习新任务的,只是无法泛化到新类型的任务

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

此后,又有网友在Colab中重复了这一实验,却得到了完全不同的结果。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

那么,我们就先来看看这篇论文,还有提出不同结果的Samuel,到底都说了什么。

新函数几乎无法预测

在这个实验中,作者使用基于Jax的机器学习框架训练了一个规模接近GPT-2的Transformer模型,该模型仅包含解码器部分

这个模型包含12层,8个注意力头,嵌入空间维度为256,参数量约为950万

为了测试它的泛化能力,作者选择了函数作为测试对象。他们将线性函数和正弦函数作为训练数据输入模型中

这两种函数对于此时的模型来说是已知,预测的结果自然也很好,但当研究者把线性函数和正弦函数进行了凸性组合时,问题就出现了。

凸性组合并没有那么神秘,作者构建出了形如f(x)=a·kx+(1-a)sin(x)的函数,在我们看来不过是两个函数按比例简单相加。

我们之所以会这样认为是因为我们的大脑具备这种泛化能力,而大规模模型则不同

对于只学过线性和正弦函数的模型来说,简单的相加看起来很新颖

针对这种新函数,Transformer的预测几乎没有任何准确性(见图4c),因此作者认为该模型在函数上缺乏泛化能力

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

为了进一步验证自己的结论,作者调整了线性或正弦函数的权重,但即使这样Transformer的预测表现也没有显著的变化。

唱鸭
唱鸭

音乐创作全流程的AI自动作曲工具,集 AI 辅助作词、AI 自动作曲、编曲、混音于一体

下载

只有一点例外——当其中一项的权重接近1时,模型的预测结果和实际就比较吻合了。

如果权重为1,则表示陌生的新函数直接变成了训练时已经见过的函数,这种数据对于模型的泛化能力显然没有什么帮助

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

进一步实验还显示,Transformer不仅对于函数的种类十分敏感,甚至同种函数也可能变成陌生条件。

研究人员发现,在改变正弦函数的频率时,即使是简单的函数模型,预测结果也会出现线束变化

只有当频率接近训练数据中的函数时,模型才能给出比较准确的预测,当频率过高或过低时,预测结果出现了严重的偏差……

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

据此,作者认为,条件只要稍微有点不一样,大模型就不知道怎么做了,这不就是说明泛化能力差吗?

作者在文中也自述了研究中存在的一些局限性,如何将函数数据上的观察应用到token化的自然语言问题上。

团队也在语言模型上尝试了相似的试验但遇到一些障碍,如何适当定义任务族(相当于这里的函数种类)、凸组合等还有待解决。

然而,萨缪尔的模型规模较小,只有4层,在Colab上训练5分钟后就可以适用于线性与正弦函数的组合

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

不能泛化又如何

根据整篇文章的综合内容来看,Quora CEO在这篇文章中的结论非常狭隘,只有在许多假设成立的情况下才能成立

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

斯隆奖得主、UCLA教授顾全全说,这篇论文本身的结论不存在争议,但不应该被过度解读。

根据之前的研究,Transformer模型只有在面对与预训练数据明显不同的内容时才无法泛化。事实上,大型模型的泛化能力通常是通过任务的多样性和复杂性来评估的

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

如果仔细追究Transformer的泛化能力,恐怕要让子弹再飞一会儿了。

但是,就算真的缺乏泛化能力,又能怎么样呢?

英伟达AI科学家Jim Fan就说,这种现象其实没啥奇怪的,因为Transformer本来就不是万金油,大模型表现得好,是因为训练数据刚好是我们关心的内容

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

Jim进一步补充道,这就好像是在说,用一千亿张猫狗的照片训练视觉模型,接着让模型去识别飞机,然后发现,哇,居然真的不认识诶。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

人类在面对一些未知任务时,不仅仅是大规模模型,也未必能够找到解决方案。这是否也暗示了人类缺乏泛化能力呢?

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

因此,在以目标为导向的过程中,不论是大型模型还是人类,最终的目的都是解决问题,而泛化只是一种手段

将这个表达方式换成中文,既然泛化能力不足,那就将其训练到没有训练样本之外的数据为止

那么,对于这项研究,你有什么看法呢?

论文地址:https://arxiv.org/abs/2311.00871

相关文章

谷歌浏览器
谷歌浏览器

谷歌浏览器Google Chrome是一款可让您更快速、轻松且安全地使用网络的浏览器。Google Chrome的设计超级简洁,使用起来得心应手。这里提供了谷歌浏览器纯净安装包,有需要的小伙伴快来保存下载体验吧!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
登录token无效
登录token无效

登录token无效解决方法:1、检查token的有效期限,如果token已经过期,需要重新获取一个新的token;2、检查token的签名,如果签名不正确,需要重新获取一个新的token;3、检查密钥的正确性,如果密钥不正确,需要重新获取一个新的token;4、使用HTTPS协议传输token,建议使用HTTPS协议进行传输 ;5、使用双因素认证,双因素认证可以提高账户的安全性。

6041

2023.09.14

登录token无效怎么办
登录token无效怎么办

登录token无效的解决办法有检查Token是否过期、检查Token是否正确、检查Token是否被篡改、检查Token是否与用户匹配、清除缓存或Cookie、检查网络连接和服务器状态、重新登录或请求新的Token、联系技术支持或开发人员等。本专题为大家提供token相关的文章、下载、课程内容,供大家免费下载体验。

781

2023.09.14

token怎么获取
token怎么获取

获取token值的方法:1、小程序调用“wx.login()”获取 临时登录凭证code,并回传到开发者服务器;2、开发者服务器以code换取,用户唯一标识openid和会话密钥“session_key”。想了解更详细的内容,可以阅读本专题下面的文章。

1044

2023.12.21

token什么意思
token什么意思

token是一种用于表示用户权限、记录交易信息、支付虚拟货币的数字货币。可以用来在特定的网络上进行交易,用来购买或出售特定的虚拟货币,也可以用来支付特定的服务费用。想了解更多token什么意思的相关内容可以访问本专题下面的文章。

1087

2024.03.01

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1668

2024.08.16

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 2.6万人学习

Go 教程
Go 教程

共32课时 | 3.1万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 1.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号