0

0

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

WBOY

WBOY

发布时间:2023-10-31 17:57:04

|

809人浏览过

|

来源于51CTO.COM

转载

强化学习(rl)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体会因为采取行动导致预期结果而获得奖励或受到惩罚。随着时间的推移,代理会学会采取行动,以使得其预期回报最大化

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

RL代理通常使用马尔可夫决策过程(MDP)进行训练,MDP是为顺序决策问题建模的数学框架。MDP由四个部分组成:

  • 状态:环境的可能状态的集合。
  • 动作:代理可以采取的一组动作。
  • 转换函数:在给定当前状态和动作的情况下,预测转换到新状态的概率的函数。
  • 奖励函数:为每次转换分配奖励给代理的函数。

代理的目标是学习策略函数,将状态映射到动作。通过策略函数来最大化代理随着时间的预期回报。

Deep Q-learning是一种使用深度神经网络学习策略函数的强化学习算法。深度神经网络以当前状态作为输入,并输出一个值向量,其中每个值代表一个可能的动作。然后代理根据具有最高值的操作进行采取

Deep Q-learning是一种基于值的强化学习算法,这意味着它学习每个状态-动作对的值。状态-动作对的值是agent在该状态下采取该动作所获得的预期奖励。

Actor-Critic是一种结合了基于值和基于策略的RL算法。有两个组成部分:

Actor:参与者负责选择操作。

Critic:负责评价Actor的行为。

演员和评论家同时接受培训。演员接受培训以最大化预期奖励,评论家接受培训以准确预测每个状态-动作对的预期奖励

Actor-Critic算法相对于其他强化学习算法有几个优点。首先,它更加稳定,这意味着在训练过程中不太可能出现偏差。其次,它更加高效,这意味着它可以更快地学习。第三,它具有更好的可扩展性,可以应用于具有大型状态和操作空间的问题

下面的表格总结了Deep Q-learning和Actor-Critic之间的主要区别:

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

Actor-Critic (A2C)的优势

演员-评论家是一种受欢迎的强化学习体系结构,它结合了基于策略和基于价值的方法。它有许多优点,使其成为解决各种强化学习任务的强有力的选择:

1、低方差

相较于传统的策略梯度方法,A2C 在训练过程中通常具有较低的方差。这是因为 A2C 同时使用了策略梯度和值函数,在梯度的计算中利用值函数来降低方差。低方差表示训练过程更加稳定,能够更快地收敛到更优的策略

2、更快的学习速度

由于低方差的特性,A2C 通常能够以更快的速度学习到一个良好的策略。这对于那些需要进行大量模拟的任务来说尤为重要,因为较快的学习速度可以节省宝贵的时间和计算资源。

3、结合策略和值函数

A2C 的一个显著特点是它同时学习策略和值函数。这种结合使得代理能够更好地理解环境和动作的关联,从而更好地指导策略改进。值函数的存在还有助于减小策略优化中的误差,提高训练的效率。

TTSMaker
TTSMaker

TTSMaker是一个免费的文本转语音工具,提供语音生成服务,支持多种语言。

下载

4、支持连续和离散动作空间

A2C 可以适应不同类型的动作空间,包括连续和离散动作,而且非常通用。这就使得 A2C 成为一个广泛适用的强化学习算法,可以应用于各种任务,从机器人控制到游戏玩法优化

5、并行训练

A2C 可以轻松地并行化,充分利用多核处理器和分布式计算资源。这意味着可以在更短的时间内收集更多的经验数据,从而提高训练效率。

尽管Actor-Critic方法具有一些优势,但是它们也面临着一些挑战,比如超参数调优和训练中的潜在不稳定性。然而,通过适当的调整以及经验回放和目标网络等技术,这些挑战可以在很大程度上得到缓解,使得Actor-Critic成为强化学习中有价值的方法

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

panda-gym

panda-gym 基于 PyBullet 引擎开发,围绕 panda 机械臂封装了 reach、push、slide、pick&place、stack、flip 等 6 个任务,主要也是受 OpenAI Fetch 启发。

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

我们将使用panda-gym作为示例来展示下面的代码

1、安装库

首先,我们需要初始化强化学习环境的代码:

!apt-get install -y \libgl1-mesa-dev \libgl1-mesa-glx \libglew-dev \xvfb \libosmesa6-dev \software-properties-common \patchelf  !pip install \free-mujoco-py \pytorch-lightning \optuna \pyvirtualdisplay \PyOpenGL \PyOpenGL-accelerate\stable-baselines3[extra] \gymnasium \huggingface_sb3 \huggingface_hub \ panda_gym

2、导入库

import os  import gymnasium as gym import panda_gym  from huggingface_sb3 import load_from_hub, package_to_hub  from stable_baselines3 import A2C from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines3.common.env_util import make_vec_env

3、创建运行环境

env_id = "PandaReachDense-v3"  # Create the env env = gym.make(env_id)  # Get the state space and action space s_size = env.observation_space.shape a_size = env.action_space  print("\n _____ACTION SPACE_____ \n") print("The Action Space is: ", a_size) print("Action Space Sample", env.action_space.sample()) # Take a random action

4、观察和奖励的规范化

强化学习优化的一个好方法是对输入特征进行归一化。我们通过包装器计算输入特征的运行平均值和标准偏差。同时还通过添加norm_reward = True来规范化奖励

env = make_vec_env(env_id, n_envs=4)  env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)

5、创建A2C模型

我们使用Stable-Baselines3团队训练过的官方代理

model = A2C(policy = "MultiInputPolicy",env = env,verbose=1)

6、训练A2C

model.learn(1_000_000)  # Save the model and VecNormalize statistics when saving the agent model.save("a2c-PandaReachDense-v3") env.save("vec_normalize.pkl")

7、评估代理

from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize  # Load the saved statistics eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")]) eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)  # We need to override the render_mode eval_env.render_mode = "rgb_array"  # do not update them at test time eval_env.training = False # reward normalization is not needed at test time eval_env.norm_reward = False  # Load the agent model = A2C.load("a2c-PandaReachDense-v3")  mean_reward, std_reward = evaluate_policy(model, eval_env)  print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")

总结

在“panda-gym”将Panda机械臂和GYM环境有效的结合使得我们可以轻松的在本地进行机械臂的强化学习,

Actor-Critic架构中代理会学会在每个时间步骤中进行渐进式改进,这与稀疏的奖励函数形成对比(在稀疏的奖励函数中结果是二元的),这使得Actor-Critic方法特别适合于此类任务。

通过无缝结合策略学习和值估计,机器人代理能够熟练地操纵机械臂末端执行器,准确到达指定的目标位置。这不仅为机器人控制等任务提供了实用的解决方案,还具有改变各种需要敏捷和明智决策的领域的潜力


相关专题

更多
什么是分布式
什么是分布式

分布式是一种计算和数据处理的方式,将计算任务或数据分散到多个计算机或节点中进行处理。本专题为大家提供分布式相关的文章、下载、课程内容,供大家免费下载体验。

319

2023.08.11

分布式和微服务的区别
分布式和微服务的区别

分布式和微服务的区别在定义和概念、设计思想、粒度和复杂性、服务边界和自治性、技术栈和部署方式等。本专题为大家提供分布式和微服务相关的文章、下载、课程内容,供大家免费下载体验。

229

2023.10.07

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

389

2023.08.14

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

41

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

3

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 7.7万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

Rust 教程
Rust 教程

共28课时 | 4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号