0

0

如何用Python for NLP从PDF文件中提取结构化的信息?

WBOY

WBOY

发布时间:2023-09-28 12:18:29

|

1775人浏览过

|

来源于php中文网

原创

如何用python for nlp从pdf文件中提取结构化的信息?

如何用Python for NLP从PDF文件中提取结构化的信息?

一、引言
随着大数据时代的到来,海量的文本数据正在不断积累,这其中包括了大量的PDF文件。然而,PDF文件是一种二进制格式,不易直接提取其中的文本内容和结构化信息。本文将介绍如何使用Python及相关的自然语言处理(NLP)工具,从PDF文件中提取结构化的信息。

二、Python及相关库的安装
在开始之前,我们需要安装Python及相关的库。在Python官网上下载并安装Python的最新版本。在安装Python之后,我们需要使用pip命令安装以下相关库:

  • PyPDF2:用于处理PDF文件
  • nltk:Python的自然语言处理工具包
  • pandas:用于数据分析与处理

安装完成后,我们可以开始编写Python代码。

立即学习Python免费学习笔记(深入)”;

三、导入所需的库
首先,我们需要导入所需的库,包括PyPDF2、nltk和pandas:

import PyPDF2
import nltk
import pandas as pd

四、读取PDF文件
接下来,我们需要读取PDF文件。使用PyPDF2库的PdfReader类来读取文件:

pdf_file = open('file.pdf', 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)

这里,我们需要将'file.pdf'替换为你想要读取的实际PDF文件名。

五、提取文本内容
读取PDF文件后,我们可以使用PyPDF2库提供的API来提取PDF中的文本内容:

Wegic
Wegic

AI网页设计和开发工具

下载
text_content = ''
for page in pdf_reader.pages:
    text_content += page.extract_text()

这样,所有页面的文本内容将被连接在一起并保存在text_content变量中。

六、数据处理与预处理
在提取文本内容后,我们需要对其进行处理与预处理。首先,我们将文本按照句子进行分割,以便后续的分析处理。我们可以使用nltk库来实现:

sentence_tokens = nltk.sent_tokenize(text_content)

接下来,我们可以将每个句子再次进行分词,以便后续的文本分析与处理:

word_tokens = [nltk.word_tokenize(sentence) for sentence in sentence_tokens]

七、文本分析与处理
在完成数据的预处理后,我们可以开始对文本进行分析与处理。这里,我们以提取关键词为例,展示具体的代码示例。

from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from collections import Counter

# 停用词
stop_words = set(stopwords.words('english'))
# 词形还原
lemmatizer = WordNetLemmatizer()

# 去除停用词,词形还原,统计词频
word_freq = Counter()
for sentence in word_tokens:
    for word in sentence:
        if word.lower() not in stop_words and word.isalpha():
            word = lemmatizer.lemmatize(word.lower())
            word_freq[word] += 1

# 提取前20个关键词
top_keywords = word_freq.most_common(20)

这段代码中,我们使用nltk库提供的stopwords和WordNetLemmatizer类来分别处理停用词和词形还原。然后,我们使用Counter类来统计每个词的词频,并提取出现频率最高的前20个关键词。

八、结果展示与保存
最后,我们可以将提取的关键词以表格形式展示,并保存为CSV文件:

df_keywords = pd.DataFrame(top_keywords, columns=['Keyword', 'Frequency'])
df_keywords.to_csv('keywords.csv', index=False)

这样,我们就可以得到以表格形式展示的关键词,并将其保存为名为'keywords.csv'的CSV文件。

九、总结
通过使用Python及相关的NLP工具,我们可以方便地从PDF文件中提取结构化的信息。在实际应用中,还可以使用其他的NLP技术,如命名实体识别、文本分类等,根据需求进行更复杂的文本分析与处理。希望本文能够帮助读者在处理PDF文件时提取有用的信息。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

698

2023.08.11

小游戏4399大全
小游戏4399大全

4399小游戏免费秒玩大全来了!无需下载、即点即玩,涵盖动作、冒险、益智、射击、体育、双人等全品类热门小游戏。经典如《黄金矿工》《森林冰火人》《狂扁小朋友》一应俱全,每日更新最新H5游戏,支持电脑与手机跨端畅玩。访问4399小游戏中心,重温童年回忆,畅享轻松娱乐时光!官方入口安全绿色,无插件、无广告干扰,打开即玩,快乐秒达!

30

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号