0

0

如何在Python中计算学生化残差?

WBOY

WBOY

发布时间:2023-09-24 18:45:02

|

1499人浏览过

|

来源于tutorialspoint

转载

学生化残差通常用于回归分析,以识别数据中潜在的异常值。异常值是与数据总体趋势显着不同的点,它可以对拟合模型产生重大影响。通过识别和分析异常值,您可以更好地了解数据中的潜在模式并提高模型的准确性。在这篇文章中,我们将仔细研究学生化残差以及如何在 python 中实现它。

什么是学生化残差?

术语“学生化残差”是指一类特定的残差,其标准差除以估计值。回归分析残差用于描述响应变量的观测值与其模型生成的预期值之间的差异。为了找到数据中可能显着影响拟合模型的异常值,采用了学生化残差。

以下公式通常用于计算学生化残差 -

studentized residual = residual / (standard deviation of residuals * (1 - hii)^(1/2))

其中“残差”是指观测到的响应值与预期响应值之间的差异,“残差标准差”是指残差标准差的估计值,“hii”是指每个数据点的杠杆因子。

用 Python 计算学生化残差

statsmodels 包可用于计算 Python 中的学生化残差。作为说明,请考虑以下内容 -

立即学习Python免费学习笔记(深入)”;

语法

OLSResults.outlier_test()

其中 OLSResults 指的是使用 statsmodels 的 ols() 方法拟合的线性模型。

df = pd.DataFrame({'rating': [95, 82, 92, 90, 97, 85, 80, 70, 82, 83],
   'points': [22, 25, 17, 19, 26, 24, 9, 19, 11, 16]})

model = ols('rating ~ points', data=df).fit()
stud_res = model.outlier_test()

其中“评级”和“分数”指的是简单线性回归。

算法

  • 导入 numpy、pandas、Statsmodel api。

  • 创建数据集。

  • 对数据集执行简单的线性回归模型。

  • 计算学生化残差。

  • 打印学生化残差。

    boardmix博思白板
    boardmix博思白板

    boardmix博思白板,一个点燃团队协作和激发创意的空间,集aigc,一键PPT,思维导图,笔记文档多种创意表达能力于一体,将团队工作效率提升到新的层次。

    下载

示例

此处演示了使用 scikit−posthocs 库来运行 Dunn 的测试 -

#import necessary packages and functions
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols

#create dataset
df = pd.DataFrame({'rating': [95, 82, 92, 90, 97, 85, 80, 70, 82, 83], 'points': [22, 25, 17, 19, 26, 24, 9, 19, 11, 16]})

接下来使用 statsmodels OLS 类创建线性回归模型 -

#fit simple linear regression model
model = ols('rating ~ points', data=df).fit()

使用离群值 test() 方法,可以在 DataFrame 中生成数据集中每个观察值的学生化残差 -

#calculate studentized residuals
stud_res = model.outlier_test()

#display studentized residuals
print(stud_res)

输出

  student_resid   unadj_p   bonf(p)
0       1.048218  0.329376  1.000000
1      -1.018535  0.342328  1.000000
2       0.994962  0.352896  1.000000
3       0.548454  0.600426  1.000000
4       1.125756  0.297380  1.000000
5      -0.465472  0.655728  1.000000
6      -0.029670  0.977158  1.000000
7      -2.940743  0.021690  0.216903
8       0.100759  0.922567  1.000000
9      -0.134123  0.897080  1.000000

我们还可以根据学生化残差快速绘制预测变量值 -

语法

x = df['points']
y = stud_res['student_resid']

plt.scatter(x, y)
plt.axhline(y=0, color='black', linestyle='--')
plt.xlabel('Points')
plt.ylabel('Studentized Residuals')

这里我们将使用 matpotlib 库来绘制颜色 = 'black' 和生活方式 = '--' 的图表

算法

  • 导入matplotlib的pyplot库

  • 定义预测变量值

  • 定义学生化残差

  • 创建预测变量与学生化残差的散点图

示例

import matplotlib.pyplot as plt

#define predictor variable values and studentized residuals
x = df['points']
y = stud_res['student_resid']

#create scatterplot of predictor variable vs. studentized residuals
plt.scatter(x, y)
plt.axhline(y=0, color='black', linestyle='--')
plt.xlabel('Points')
plt.ylabel('Studentized Residuals')

输出

如何在Python中计算学生化残差?

结论

识别和评估可能的数据异常值。检查学生化残差可以让您找到与数据总体趋势有很大偏差的点,并探索它们影响拟合模型的原因。识别显着观测值 学生化残差可用于发现和评估有影响力的数据,这些数据对拟合模型有重大影响。寻找高杠杆点。学生化残差可用于识别高杠杆点。杠杆是衡量某个点对拟合模型影响程度的指标。总体而言,使用学生化残差有助于分析和提高回归模型的性能。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

626

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

61

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Rust 教程
Rust 教程

共28课时 | 4万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号