0

0

一个数字连线游戏?

PHPz

PHPz

发布时间:2023-09-16 10:53:01

|

1780人浏览过

|

来源于tutorialspoint

转载

数字连接是一种逻辑谜题,涉及在网格中找到连接数字的路径。

一个数字连线游戏?

Numberlink谜题的一个简单例子 Numberlink谜题的解答

一个数字连线游戏?

规则 - 玩家必须用单一连续线(或路径)将网格上的所有匹配数字配对。线条不能分叉或交叉,并且数字必须位于每条线的末端(即不在中间)。只有当问题具有唯一解并且网格中的所有单元格都填充时,才认为问题设计良好,尽管一些Numberlink设计师不规定这一点。

游戏 - 考虑一个n×n的方块阵列。其中一些方块为空,一些方块是实心的,一些非实心方块被整数1、2、3、...标记。每个整数在棋盘上占据两个不同的方块。玩家的任务是仅使用水平和垂直移动,通过简单的路径连接棋盘上每个整数的两个出现。不允许两条不同的路径相交。任何路径都不能包含任何实心方块(任何路径上都不允许出现实心方块)。最后,所有非实心方块必须由路径填充。

算法 - 要准备一个给定棋盘大小n×n的有效随机谜题,我们首先在棋盘上生成随机的简单互不相交的路径。如果有几个孤立的方块仍然在所有生成的路径之外,将这些孤立的方块标记为实心(禁止)。然后,我们将路径的端点和实心方块的列表作为谜题。

因此,我们首先生成一个解答,然后从解答中解出谜题。路径和实心方块将n×n棋盘分割成若干部分。我们使用并查集数据结构来生成这个分割。数据结构处理棋盘上n^2个方块的子集。

解释

  • 随机在棋盘上找到方块(i, j)和(k, l),使得:(a)(i, j)和(k, l)是彼此的邻居,且(b)(i, j)和(k, l)都不属于到目前为止生成的任何路径。如果在整个棋盘上找不到这样一对方块,则返回失败 /* 在这里,(i, j)和(k, l)是要构建的新路径的前两个方块。 *

  • 将包含(i, j)和(k, l)的两个并查集树合并。

  • 重复以下步骤,直到当前路径无法延伸:将(i, j)重命名为(k, l)。随机找到(i, j)的邻居方块(k, l),使得:(a)(k, l)不属于到目前为止生成的任何路径(包括当前路径)(b)部分构建的当前路径上(i, j)的唯一邻居是(k, l)。

  • 如果找不到这样的邻居方块(k, l),则路径无法进一步延伸,因此跳出循环

    H5 3D滚球游戏源码
    H5 3D滚球游戏源码

    html5酷炫3D彩球滚动手机游戏代码下载。游戏介绍:一个彩色圆球滚动,通过鼠标或手机触屏拖动来控制彩球的运行当前线路轨迹。这是一款简单易操作的手机小游戏源码。

    下载
  • 否则,将包含(i, j)和(k, l)的两个并查集树合并。

  • 设置新路径的起始方块和终点方块的标志。

  • 返回成功

输入

| || || || || || || 4 |
| || || || || || 3 || |
| || || 2 || 2 || || || 3 |
| || || || || X || || 1 |
| || || 6 || || || 7 || 7 |
| 5 || 4 || || X || || X || 1 |
| || 5 || || 6 || || || |

输出

上表的解

| 4 || 4 || 4 || 4 || 4 || 4 || 4 |
| 4 || 1 || 1 || 1 || 1 || 3 || 3 |
| 4 || 1 || 2 || 2 || 1 || 1 || 3 |
| 4 || 1 || 1 || 1 || X || 1 || 1 |
| 4 || 4 || 6 || 1 || 1 || 7 || 7 |
| 5 || 4 || 6 || X || 1 || X || 1 |
| 5 || 5 || 6 || 6 || 1 || 1 || 1 |

示例

#include
#include
#include
struct _node {
   struct _node *parent;
   int rank;
   int path_number;
   int endpoint;
};
typedef struct _node node;
/* Name: initboard()
Input: 2D-array of pointers, size of array row/column
Output: --void--
Description: Takes a table of pointers and initializes it. */
void initboard(node ***arr, int n) {
   int i, j;
   for (i=0;irank = 0;
         np->parent = NULL;
         np->path_number = 0;
         np->endpoint = 0;
         arr[i][j] = np;
      }
   }
}
/*

Input:a node
Output:the set pointer of the set the node belongs to

描述 - 获取一个节点并返回设置的指针。 */

node *findset(node *n) {
   if (n->parent != NULL)
      n = n->parent;
   return n;
}
void setunion(node *x, node *y) {
   x = findset(x);
   y = findset(y);
   if (x->rank > y->rank)
      y->parent = x;
   else {
      x->parent = y;
      if(x->rank == y->rank)
         y->rank++;
   }
}
int neighbour(int n, node ***arr) {
   int i1, i2, j1, j2, ct = 0, flag = 0, a, b,k2;
   int k = rand()%(n*n);
   while (ct < (n*n)) {
      k %= (n*n);
      i1 = k/n;
      j1 = k%n;
      if (arr[i1][j1]->path_number==0) {
         int kk = rand()%4;
         int cc = 0;
         switch (kk) {
            case 0: i2= i1-1;
               j2= j1-0;
            if(i2>=0 && i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 1: i2= i1-0;
               j2= j1-1;
            if(j2>=0 && i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 2: i2= i1+1;
            j2= j1-0;
            if(i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 3: i2= i1-0;
            j2= j1+1;
            if(i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 4: if(cc==4)
               break;
            i2= i1-1;
            j2= j1-0;
            if(i2>=0 && i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 5: if(cc==4)
               break;
            i2= i1-0;
            j2= j1-1;
            if(j2>=0 && i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 6: if(cc==4)
               break;
            i2= i1+1;
            j2= j1-0;
            if(i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
            case 7: if(cc==4)
               break;
            i2= i1-0;
            j2= j1+1;
            if(i2path_number==0) {
                  flag=1;
                  break;
               }
            }
            cc++;
         }
      }
      if(flag==1)
         break;
         ct++;
         k++;
   }
   if(ct0 && findset(arr[i-1][j])==findset(arr[ii][jj]))
      ct++;
   if(i0 && findset(arr[i][j-1])==findset(arr[ii][jj]))
      ct++;
   if(j1)
      return 0;
   else
      return 1;
}
int valid_next(int k, int n, node ***arr) {
   int i1, i2, j1, j2, a, b, kk, stat,ct=0;
   int flag=0;
   i1= k/n;
   j1= k%n;
   kk= rand()%4;
   switch(kk) {
      case 0: i2= i1-1;
         j2= j1-0;
      if(i2>=0 && i2path_number==0) {
            stat= checkneigh(k, (n*i2 + j2),n,arr);
            if(stat) {
               flag=1;
               break;
            }
         }
      }
      ct++;
      case 1: i2= i1-0;
         j2= j1-1;
      if(j2>=0 && i2path_number==0) {
            stat= checkneigh(k, (n*i2 + j2),n,arr);
            //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 2: i2= i1+1; j2= j1-0; if(i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 3: i2= i1-0; j2= j1+1; if(i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 4: if(ct==4) break; i2= i1-1; j2= j1-0; if(i2>=0 && i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 5: if(ct==4) break; i2= i1-0; j2= j1-1; if(j2>=0 && i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 6: if(ct==4) break; i2= i1+1; j2= j1-0; if(i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; case 7: if(ct==4) break; i2= i1-0; j2= j1+1; if(i2path_number==0) { stat= checkneigh(k, (n*i2 + j2),n,arr); //printf("%d

",stat); if(stat) { flag=1; break; } } } ct++; } //printf("flag- %d

",flag); if(flag==0) return -1; if(flag) { //printf("value sent- %d

", i2*n + j2); return (i2*n)+j2; } } int addpath(node ***arr, int n, int ptno) { int a,b,k1,k2; int i1,j1,i2,j2; k2= neighbour( n, arr); if(k2==-1) //no valid pair found to start with return 0; k1= k2/(n*n); k2= k2%(n*n); //printf("%d %d

",k1,k2); i1= k1/n; j1= k1%n; i2= k2/n; j2= k2%n; arr[i1][j1]->endpoint= 1; arr[i2][j2]->path_number= ptno; arr[i1][j1]->path_number= ptno; node *n1, *n2; n1= arr[i1][j1]; n2= arr[i2][j2]; n1= findset(n1); n2= findset(n2); setunion(n1, n2); while(1) { i1= i2; j1= j2; k1= (i1*n)+j1; k2= valid_next(k1,n,arr); if(k2==-1) { arr[i1][j1]->endpoint= 1; break; } i2=k2/n; j2=k2%n; arr[i2][j2]->path_number= ptno; node *n1, *n2; n1= arr[i1][j1]; n2= arr[i2][j2]; n1= findset(n1); n2= findset(n2); setunion(n1,n2); } return 1; } void printtable(node ***arr, int n) { int i,j; printf("Table to be solved:

"); for(i=0;iendpoint ==1){ if(arr[i][j]->path_number/10==0) printf("| %d |",arr[i][j]->path_number); else printf("| %d|",arr[i][j]->path_number); } else if(arr[i][j]->path_number==0) printf("| X |"); else printf("| |"); } printf("

"); } printf("

The solution to the above table:

"); for(i=0;ipath_number != 0){ if(arr[i][j]->path_number/10==0) printf("| %d |",arr[i][j]->path_number); else printf("| %d|",arr[i][j]->path_number); } else printf("| X |"); } printf("

"); } } int main(void) { srand((unsigned int) time (NULL)); int i, j; int ct = 1; int n = 7; node*** pointers= (node ***)malloc(n*sizeof(node **)); for (i=0; i

相关专题

更多
treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

529

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

5

2025.12.22

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

386

2023.08.14

excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

24

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

74

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

207

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
C++教程
C++教程

共115课时 | 10.5万人学习

Java 教程
Java 教程

共578课时 | 39.6万人学习

Webpack4.x---十天技能课堂
Webpack4.x---十天技能课堂

共20课时 | 1.4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号