0

0

如何使用Python使用动态数组执行Numpy广播?

PHPz

PHPz

发布时间:2023-09-15 09:13:02

|

855人浏览过

|

来源于tutorialspoint

转载

如何使用python使用动态数组执行numpy广播?

"Broadcasting” refers to how NumPy handles arrays of different dimensions during arithmetic operations. The smaller array is "broadcast" across the larger array, subject to certain limits, to ensure that their shapes are consistent. Broadcasting allows you to vectorize array operations, allowing you to loop in C rather than Python."

This is accomplished without the need for unnecessary data copies, resulting in efficient algorithm implementations. In some cases, broadcasting is a negative idea since it results in wasteful memory utilization, which slows down the computation.

In this article, we will show you how to perform broadcasting with NumPy arrays using python.

在给定数组上执行广播的步骤-

  • Step 1. Create two arrays of compatible dimensions

    立即学习Python免费学习笔记(深入)”;

  • Step 2. Print the given array

  • Step 3. Perform arithmetic operation with the two arrays

  • Step 4. Print the result array

添加两个不同维度的数组

使用arange()函数创建一个由0到n-1的数字组成的numpy数组(arange()函数返回在给定区间内均匀间隔的值。在半开区间[start,stop]内生成值),并将某个常数值加到其中。

Example

import numpy as np
# Getting list of numbers from 0 to 7
givenArray = np.arange(8)

# Adding a number to the numpy array 
result_array = givenArray + 9
print("The input array",givenArray)
print("Result array after adding 9 to the input array",result_array)

输出

The input array [0 1 2 3 4 5 6 7]
Result array after adding 9 to the input array [ 9 10 11 12 13 14 15 16] 

给定的数组有一个维度(轴),长度为8,而9是一个没有维度的简单整数。由于它们的维度不同,Numpy尝试沿着某个轴广播(只是拉伸)较小的数组,使其适用于数学运算。

BgSub
BgSub

免费的AI图片背景去除工具

下载

将具有兼容维度的两个数组相加

Creating two NumPy arrays from 0 to n-1 using the arange() function and reshaping it with reshape() function(reshapes an array without affecting its data). The two arrays are with compatible dimensions (3,4) and (3,1) and adding the corresponding elements of both the arrays.

Example

import numpy as np
# Getting the list of numbers from 0 to 11 and reshaping it to 3 rows and 4 columns
givenArray_1 = np.arange(12).reshape(3, 4)

# Printing the shape(rowsize, columnsize) of array
print("The shape of Array_1 = ", givenArray_1.shape)
 
# Getting list of numbers from 0 to 2 and reshaping it to 3 rows and 1 columns
givenArray_2 = np.arange(3).reshape(3, 1)
print("The shape of Array_2 = ", givenArray_2.shape)

# Summing both the arrays
print("Input array 1 \n",givenArray_1)
print("Input array 2 \n",givenArray_2)
print("Summing both the arrays:")
print(givenArray_1 + givenArray_2)

输出

The shape of Array_1 =  (3, 4)
The shape of Array_2 =  (3, 1)
Input array 1 
 [[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11] ]
Input array 2 
 [[0]
  [1]
  [2]]
Summing both the arrays:
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]

The givenArray_2 is expanded along the second dimension to match the dimension of givenArray_1. As the dimensions of both the arrays are compatible this can be made possible.

将具有不兼容维度的两个数组求和

Creating two NumPy arrays with INCOMPATIBLE dimensions (6, 4) and (6, 1). When we try to add the corresponding elements of both the arrays it raises an ERROR as shown below.

Example

import numpy as np
# Getting a list of numbers from 0 to 11 and reshaping it to 3 rows and 4 columns
givenArray_1 = np.arange(20).reshape(6, 4)

# Printing the shape(rowsize, columnsize) of array
print("The shape of Array_1 = ", givenArray_1.shape)
 
# Getting list of numbers from 0 to 5 and reshaping it to 3 rows and 1 columns
givenArray_2 = np.arange(6).reshape(6, 1)
print("The shape of Array_2 = ", givenArray_2.shape)

# Summing both the arrays
print("Summing both the arrays:")
print(givenArray_1 + givenArray_2)

输出

Traceback (most recent call last):
  File "main.py", line 3, in 
    givenArray_1 = np.arange(20).reshape(6, 4)
ValueError: cannot reshape array of size 20 into shape (6,4)

行数为6,列数为4。

It cannot be inserted in a matrix of size 20 (it requires a matrix of size 6*4 = 24).

Summing Numpy Multidimensional Array and Linear Array

Create an multidimensional array using the arange() function and reshape it to some random number of rows and columns using the reshape() function. Create Another linear array using the arange() function and sum both these arrays.

Example 1

import numpy as np
# Getting list of numbers from 0 to 14 and reshaping it to 5 rows and 3 columns
givenArray_1 = np.arange(15).reshape(5, 3)

# Printing the shape(rowsize, columnsize) of array
print("The shape of Array_1 = ", givenArray_1.shape)
 
# Getting list of numbers from 0 to 2
givenArray_2 = np.arange(3)
print("The shape of Array_2 = ", givenArray_2.shape)

# Summing both the arrays
print("Array 1 \n",givenArray_1)
print("Array 2 \n",givenArray_2)
print("Summing both the arrays: \n",givenArray_1 + givenArray_2)

输出

The shape of Array_1 =  (5, 3)
The shape of Array_2 =  (3,)
Array 1 
 [[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]
  [ 9 10 11]
  [12 13 14]]
Array 2 
 [0 1 2]
Summing both the arrays: 
 [[ 0  2  4]
  [ 3  5  7]
  [ 6  8 10]
  [ 9 11 13]
  [12 14 16]]
 

给定的线性数组被扩展以匹配给定数组1(多维数组)的维度。由于两个数组的维度是兼容的,这是可能的。

Example 2

import numpy as np
givenArray_1 = np.arange(240).reshape(6, 5, 4, 2)
print("The shape of Array_1: ", givenArray_1.shape)
 
givenArray_2 = np.arange(20).reshape(5, 4, 1)
print("The shape of Array_2: ", givenArray_2.shape)
 
# Summing both the arrays and printing the shape of it
print("Summing both the arrays and printing the shape of it:")
print((givenArray_1 + givenArray_2).shape)

输出

The shape of Array_1:  (6, 5, 4, 2)
The shape of Array_2:  (5, 4, 1)
Summing both the arrays and printing the shape of it:
(6, 5, 4, 2)

It is critical to understand that multiple arrays can be propagated along several dimensions. Array1 has dimensions (6, 5, 4, 2), whereas array2 has dimensions (5, 4, 1). The dimension array is formed by stretching array1 along the third dimension and array2 along the first and second dimensions(6, 5, 4, 2).

结论

Numpy广播比在数组上循环更快。从第一个示例开始。用户可以通过循环遍历数组,将相同的数字添加到数组中的每个元素,而不是使用广播方法。这种方式之所以慢,有两个原因:循环需要与Python循环进行交互,这会减慢C实现的速度。其次,NumPy使用步幅而不是循环。将步幅设置为0允许您无限循环遍历组件,而不会产生内存开销。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

739

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

698

2023.08.11

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号