0

0

如何在Python中求逆矩阵或nArray?

WBOY

WBOY

发布时间:2023-09-09 11:29:02

|

1977人浏览过

|

来源于tutorialspoint

转载

如何在python中求逆矩阵或narray?

在本文中,我们将向您展示如何使用 Python 中的 NumPy 库计算矩阵或 ndArray 的逆。

什么是矩阵的逆矩阵?

矩阵的逆矩阵是这样的,如果它乘以原始矩阵,就会得到单位矩阵。

矩阵的逆只是矩阵的倒数,就像在常规算术中一样,对于用于求解方程以获得未知变量值的单个数字。矩阵的逆矩阵是与原始矩阵相乘时生成单位矩阵的矩阵。

只有当矩阵是非奇异的,即行列式不为0时,矩阵的逆才存在。我们可以使用下面的公式,使用行列式和伴随矩阵来简单地找到方阵的逆

if det(A) != 0
 A-1 = adj(A)/det(A)
else
 "Inverse does not exist"

方法 1 - 对 np.array() 类型使用 numpy.linalg.inv() 函数

numpy.linalg.inv() 函数

Python 有一个非常简单的方法来计算矩阵的逆。要计算矩阵的逆,请使用 Python 中 NumPy 模块中的 numpy.linalg.inv() 函数绕过矩阵。

立即学习Python免费学习笔记(深入)”;

语法

numpy.linalg.inv(array)

参数

array - 它是必须反转的矩阵。

返回值 - numpy.linalg.inv() 函数返回矩阵的逆矩阵。

算法(步骤)

以下是执行所需任务所需遵循的算法/步骤 -

  • 使用 import 关键字,导入带有别名 (np) 的 numpy 模块。

  • 使用numpy.array()函数(返回一个ndarray。ndarray是满足给定要求的数组对象),通过传递3维数组来创建numpy数组array(3rows, 3columns) 作为它的参数。

  • 使用 numpy 模块的 linalg.inv() 函数(计算矩阵的逆)通过将输入矩阵作为参数传递来计算输入 3x3 矩阵的逆并打印逆矩阵。

示例

以下程序使用 numpy.linalg.inv() 函数返回输入 3 维 (3x3) 矩阵的逆矩阵 -

唱鸭
唱鸭

音乐创作全流程的AI自动作曲工具,集 AI 辅助作词、AI 自动作曲、编曲、混音于一体

下载

# importing numpy module with an alias name
import numpy as np

# creating a 3-Dimensional(3x3) numpy matrix
inputArray_3d = np.array([[4, 5, 1],
   [3, 4, 12],
   [10, 2, 1]])

# printing the input 3D matrix
print("The input numpy 3D matrix:")
print(inputArray_3d)

# calculating the inverse of an input 3D matrix
resultInverse= np.linalg.inv(inputArray_3d)

# printing the resultant inverse of an input matrix
print("The Inverse of 3-Dimensional(3x3) numpy matrix:")
print(resultInverse)

输出

执行时,上述程序将生成以下输出 -

The input numpy 3D matrix:
[[ 4  5  1]
 [ 3  4 12]
 [10  2  1]]
The Inverse of 3-Dimensional(3x3) numpy matrix:
[[-0.04246285 -0.00636943  0.11889597]
 [ 0.24840764 -0.01273885 -0.0955414 ]
 [-0.07218684  0.08917197  0.00212314]]

方法 2 - 使用 scipy.linalg.inv() 函数

scipy.linalg.inv()

使用 scipy 模块的功能,我们可以执行各种科学计算。它也适用于 numpy 数组。

在Python中,scipy.linalg.inv()还可以返回给定方阵的逆矩阵。它的工作方式与 numpy.linalg.inv() 函数相同。

算法(步骤)

以下是执行所需任务所需遵循的算法/步骤 -

  • 使用 import 关键字,从 scipy 模块导入 linalg。

  • 使用numpy.matrix()函数(从数据字符串或类似数组的对象返回矩阵。生成的矩阵是一个专门的二维数组),用于创建numpy 矩阵,通过将二维数组(2行,2列)作为参数传递给它。

  • 使用 scipy 模块的 linalg.inv() 函数(计算矩阵的逆)通过将输入矩阵作为参数传递来计算输入 2x2 矩阵的逆并打印逆矩阵。

    示例

    import numpy as np
    # importing linalg from scipy module
    from scipy import linalg
    
    # creating a 2-Dimensional(2x2) NumPy matrix
    inputMatrix = np.matrix([[5, 2],[7, 3]])
    
    # printing the input 2D matrix
    print("The input numpy 2D matrix:")
    print(inputMatrix)
    
    # calculating the inverse of an input 2D matrix
    resultInverse = linalg.inv(inputMatrix)
    
    # printing the resultant inverse of an input matrix
    print("The Inverse of 2-Dimensional(2x2) numpy matrix:")
    print(resultInverse)
    

    输出

    The input numpy 2D matrix:
    [[5 2]
    [7 3]]
    The Inverse of 2-Dimensional(2x2) numpy matrix:
    [[ 3. -2.]
    [-7. 5.]]
    

    方法 3 - 对 np.matrix() 类型使用 numpy.linalg.inv() 函数

    算法(步骤)

    以下是执行所需任务所需遵循的算法/步骤 -

    • 使用 numpy.matrix() 函数(从数据字符串或类似数组的对象返回矩阵。生成的矩阵是一个专门的 4D 数组),用于创建numpy 矩阵,通过将 4 维数组(4 行,4 列)作为参数传递给它。

      示例

      import numpy as np
      
      # creating a NumPy matrix (4x4 matrix) using matrix() method
      inputMatrix = np.matrix('[11, 1, 8, 2; 11, 3, 9 ,1; 1, 2, 3, 4; 9, 8, 7, 6]')
      
      # printing the input 4D matrix
      print("The input NumPy matrix:")
      print(inputMatrix)
      
      # calculating the inverse of an input matrix
      resultInverse= np.linalg.inv(inputMatrix)
      
      # printing the resultant inverse of an input matrix
      print("The Inverse of 4-Dimensional(4x4) numpy matrix:")
      print(resultInverse)
      

      输出

      The input NumPy matrix:
      [[11 1 8 2]
      [11 3 9 1]
      [ 1 2 3 4]
      [ 9 8 7 6]]
      The Inverse of 4-Dimensional(4x4) numpy matrix:
      [[ 0.25   -0.23214286   -0.24107143   0.11607143]
      [-0.25     0.16071429   -0.09464286   0.11964286]
      [-0.25     0.375         0.3125      -0.1875    ]
      [ 0.25    -0.30357143    0.12321429   0.05178571]]
      

      结论

      在本文中,我们学习了如何使用三个不同的示例来计算矩阵的逆。我们学习了如何使用两种不同的方法在 Numpy 中获取矩阵:numpy.array() 和 NumPy.matrix()。

        相关文章

        python速学教程(入门到精通)
        python速学教程(入门到精通)

        python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

        下载

        本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

        相关专题

        更多
        python开发工具
        python开发工具

        php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

        715

        2023.06.15

        python打包成可执行文件
        python打包成可执行文件

        本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

        625

        2023.07.20

        python能做什么
        python能做什么

        python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

        739

        2023.07.25

        format在python中的用法
        format在python中的用法

        Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

        617

        2023.07.31

        python教程
        python教程

        Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

        1235

        2023.08.03

        python环境变量的配置
        python环境变量的配置

        Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

        547

        2023.08.04

        python eval
        python eval

        eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

        575

        2023.08.04

        scratch和python区别
        scratch和python区别

        scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

        699

        2023.08.11

        php源码安装教程大全
        php源码安装教程大全

        本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

        7

        2025.12.31

        热门下载

        更多
        网站特效
        /
        网站源码
        /
        网站素材
        /
        前端模板

        精品课程

        更多
        相关推荐
        /
        热门推荐
        /
        最新课程
        NumPy 教程
        NumPy 教程

        共44课时 | 2.7万人学习

        最新Python教程 从入门到精通
        最新Python教程 从入门到精通

        共4课时 | 0.6万人学习

        Django 教程
        Django 教程

        共28课时 | 2.6万人学习

        关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
        php中文网:公益在线php培训,帮助PHP学习者快速成长!
        关注服务号 技术交流群
        PHP中文网订阅号
        每天精选资源文章推送

        Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号