
In this tutorial, we will be discussing a program to find the roots of the Quadratic equation.
Given a quadratic equation of the form ax2 + bx + c. Our task is to find the roots x1 and x2 of the given equation.
For this, we are using the deterministic method, in this
D = √b2 - 4ac
UQCMS云商是一款B2B2C电子商务软件 ,非常适合初创的创业者,个人及中小型企业。程序采用PHP+MYSQL,模板采用smarty模板,二次开发,简单方便,无需学习其他框架就可以自行模板设计。永久免费使用,操作简单,安全稳定。支持PC+WAP+微信三种浏览方式,支持微信公众号。
then the roots of the equation will be
x1 = (-b + D)/2a ,and
x2 = (-b - D)/2a
Example
#include#include #include //calculating the roots of equation void calc_roots(int a, int b, int c) { if (a == 0) { printf("Invalid Equation"); return; } int d = b*b - 4*a*c; double sqrt_val = sqrt(abs(d)); if (d > 0) { printf("Roots are both real and different "); printf("%f
%f",(double)(-b + sqrt_val)/(2*a) , (double)(-b - sqrt_val)/(2*a)); } else if (d == 0) { printf("Roots are real and same
"); printf("%f",-(double)b / (2*a)); } else { printf("Roots are complex
"); printf("%f + i%f
%f - i%f", -(double)b /(2*a),sqrt_val ,-(double)b / (2*a), sqrt_val); } } int main() { int a = 2, b = -5, c = 8; calc_roots(a, b, c); return 0; }
输出
Roots are complex 1.250000 + i6.244998 1.250000 - i6.244998









